• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 21
  • 18
  • 10
  • 2
  • 1
  • Tagged with
  • 153
  • 153
  • 52
  • 34
  • 34
  • 29
  • 23
  • 22
  • 19
  • 18
  • 16
  • 15
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Régulation de l'organisation des microtubules par les adhérences cellulaires au cours de la morphogenèse épithéliale / Interplay between microtubule organization and cell adhesions during epithelial morphogenesis

Burute, Mithila 18 May 2016 (has links)
Au cours de son développement depuis la cellule unique jusqu’à la forme adulte, l’embryon passe par de nombreuses étapes de morphogenèse. L'harmonie entre les cellules au cours de ces processus est assurée par l’intégration spatiale des signaux externes qui assurent la cohérence des polarités internes et externes des cellules. Ce travail de thèse se concentre sur la façon dont les cellules intègrent les informations spatiales dans la définition de leur polarité au cours de grandes transformations morphologiques comme la transition épithélium-mésenchyme et la dissémination des cellules tumorales. Nous avons utilisé la position du centrosome comme un indicateur de la polarité cellulaire interne en raison de son rôle actif dans l'organisation des microtubules et donc dans l'orientation du transport intra-cellulaire. La polarité corticale a été inférée à partir de la répartition spatiale des adhérences cellule-cellule (ACC) et cellule-matrice (ACM).Dans la première partie, nous avons étudié l'effet de l'amplification du nombre de centrosomes, une caractéristique fréquente dans les cellules tumorales, sur l’adhérence inter-cellulaire. L'amplification des centrosomes dans les cellules de la glande mammaire a conduit à la rupture des adhérences inter-cellulaires ainsi qu’à la genèse de protubérances cellulaire invasive. Cependant le matériel centrosomal étant plus développé, de nombreux microtubules supplémentaires émanait de ces clusters de centrosomes surnuméraires. L'utilisation de modèles cellulaires in vitro et de conditions de culture contrôlées ont révélées que la simple amplification des centrosomes est suffisante pour moduler le destin de cellules transformées et les rendre invasives. Cette étude a révélé que les mécanismes régissant l’orientation la polarité interne des cellules sont liés à l’arrangement spatial de la polarité corticale et que la diaphonie entre les deux perturbe la physiologie du tissu au point d’induire la formation de métastases tumorales.La deuxième partie de l'étude a porté sur l'exploration de la transition épithélium-mésenchyme (EMT). Nous avons étudié le rôle potentiel des mécanismes de régulation de la polarité pour diriger la précision des mouvements cellulaire au cours de l’EMT. Le remodelage des adhérences inter-cellulaires jouant un rôle central au cours de l’EMT, nous avons supposé qu'il était couplé à des changements de polarité interne. Nous avons suivi le positionnement du centrosome dans les cellules épithéliales et dans les cellules dans lesquelles l’EMT était induite par stimulation au TGFb. La libération des cellules mésenchymateuses de leur confinement nous a montré que la séparation des cellules après l’EMT était dépendante de l’inversion de polarité interne dans ces cellules. Ces résultats suggèrent que la dispersion des cellules observée pendant la formation du mésoderme au cours de la gastrulation impliquent un renversement actif et finement contrôlée du couplage entre l’axe de polarité interne et l’asymétrie des deux types d’adhérences cellulaires.Suite à l’étude de ces deux projets impliquant des dispersions cellulaires, nous avons développé un dispositif pour permettre le criblage de médicaments contre les dérèglements cellulaires impliqués dans la formation des métastases. Nous avons à nouveau utilisé un modèle simplifié de paires de cellules sur des micropattern pour détecter la capacité de dispersion des cellules suite à des stimulations externes comme celle induisant l’EMT. Le test, qui permet de mesurer le degré de séparation des cellules à l’aide d’une seule image, a été validé sur quatre lignées de cellules épithéliales différentes. Le dispositif final a été adapté à un format de plaque 96 puits en collaboration avec l’entreprise Cytoo afin de permettre des criblages à haut contenu. Ce kit a ensuite été validé en testant des médicaments connus contre l’EMT. / Development from single cell embryo to multicellular adult form of organism involves tremendous morphogenesis. The well defined and highly controlled morphonogenetic processes are crucial at every stage of development including gastrulation, organogensis, wound healing and tissue maintenance. The necessary harmony between cells for these processes is achieved by integration of internal and external polarity cues. This thesis work is focused on understanding how cells integrate polarity cues to drive morphogenetic event such as of Epithelial to mesenchymal transition (EMT) and cancer metastasis. We used centrosome position as an indicator of internal cell polarity due to its active role in organization of microtubules and orientation of internal traffic of endocytosed and secreted proteins; while cortical polarity was inferred by polarized distribution of cell-cell adhesions (CCA) and cell-matrix adhesions (CMA). In the first part, we studied effect of centrosome amplification, which is very common in human cancer; on CCA. Inducible centrosome amplification in mammary gland cells led to destabilization of CCA alongwith generation of invasive cell protrusions. Using a minimal model of tissue; confined on micropatterns, we demonstrated that cells with amplified centrosome correctly oriented their internal polarity axis like normal cells although increased centrosomal protein and peri-centriolar material emanated higher centrosomal microtubules. Use of in vitro models of cell lines and controlled culture conditions revealed that mere amplification of centrosome was sufficient to drive cell fate for cancer-like events in the absence of any additional external growth signals capable of affecting cortical polarity. This study revealed that internal polarity cues interact with cortical polarity signals and the crosstalk between the two governs the physiological state of the cell during transformation events like cancer metastasis. The second part of the study focused on exploring how internal polarity during EMT is modulated to drive precise spatial movements during development. Cell adhesion remodelling being central to EMT, we hypothesized that it was coupled to internal polarity changes. We monitored centrosome position in epithelial and in cells induced for EMT by TGFb and found that nucleus-centrosome axis was reversed. This phenomenon of polarity reversal strongly suggested that internal polarity cues and positioning of organelles is coupled to signals that polarize CCA and CMA distribution. A shift in the force balance between CCA and CMA was observed upon EMT and suggested that CMA forces dominated in mesenchymal cells and release of cells from confinement clearly revealed that ability of cell separation was dependent upon their internal polarity. These results demonstrated that scattering events observed during mesoderm formation during gastrulation or metastasis events in cancer involve active and tightly controlled reversal of internal polarity axis coupled to cortical polarity of cells. From the understanding of above two projects involving cancer-like scattering phenomenon, we developed a product to allow robust drug screening against cancer drugs. We once again used simplified two-cell model on micropattern geometries to develop an assay to detect scattering ability of cells after events like EMT. The assay was validated by EMT transformation of 4 different epithelial cells lines and detection of their scattering ability by single time point picture assay. We used internuclear distance between the cell-pair as the main parameter for scoring the scattering index of cells with possibility of automated image processing. The final product was manufactured in 96-well plate format by industrial collaborator Cytoo for high content screening. Preliminary validation using drugs against EMT constituted proof of principle for the product.
62

TMIGD1 regulates epithelial cell polarity and morphology

Mitchell, Ashley 03 July 2018 (has links)
Epithelial cells are unique for their ability to strongly adhere to one another and coordinate communication across an asymmetrical, polar plasma membrane. These properties are necessary for carrying out normal epithelial function, such as absorbing/secreting molecules, repairing wounds, lining organs, etc. Cadherins, claudins, and occludins are major players of epithelial cell adhesion and polarity. Previously, transmembrane immunoglobulin domain containing-1, TMIGD1, was identified as a novel cell adhesion molecule, whose expression is downregulated in human renal carcinomas. Re-expression of TMIGD1 in renal tumor cells resulted in altered cell morphology and inhibition of tumor growth. In this study, we examined the hypothesis that TMIGD1 activity is associated with epithelial cell polarity. We demonstrated that TMIGD1 regulates actin stress fibril formation. A 3-dimensional (3D) cell culture assay was developed to examine the role of TMIGD1 in cell morphology and polarity. Our results demonstrate that TMIGD1 regulates actin fibril formation in Madin-Darby Canine Kidney (MDCK) cells, as blocking TMIGD1 activity by blocking antibody inhibited actin fibril formation in 3D cell culture system. Moreover, ectopic expression of TMIGD1 in rectal carcinoma cells, (RKO) , significantly inhibited filopodia formation. Taken together, our data identifies TMIGD1 as a possible regulator of epithelial cell morphology and polarity. / 2020-07-03T00:00:00Z
63

Deciphering the "Polarity Code": the Mechanism of Par Complex Substrate Polarization

Bailey, Matthew 27 September 2017 (has links)
Animal cells, as distinct as epithelia and migratory cells, have cell polarity that is defined by a common set of molecules. The Par complex polarizes the cortex of animal cells through the activity of atypical protein kinase C (aPKC). In this work, I aimed to determine the mechanism of aPKC substrate polarization and identify common characteristics of aPKC substrates that are polarized by phosphorylation. I found that several diverse Par-polarized proteins contain short highly basic and hydrophobic motifs that overlap with their aPKC phosphorylation sites. These Phospho-Regulated Basic and Hydrophobic (PRBH) motifs mediate plasma membrane localization by electrostatics-based phospholipid binding when unphosphorylated but are displaced into the cytoplasm when phosphorylated. To assess whether the Par complex polarizes other proteins by this mechanism, I developed an algorithm to identify potential PRBH motifs and score these linear motifs for basic and hydrophobic character, as well as the quality and number of aPKC phosphorylation sites. Using this algorithm, I identified numerous putative PRBH candidates in the fruit fly proteome and performed two screens of these candidates for Par-polarized proteins. The first screen focused on determining whether aPKC regulates cortical targeting of proteins that are reported to be polarized. This screen identified the Rho GAP crossveinless-c (cv-c) to be a novel aPKC substrate and found that aPKC is sufficient to polarize cv-c in a reconstituted polarity assay. The second screen characterized the localization of putative PRBH motif-containing proteins in vivo. This screen identified a previously uncharacterized protein, CG6454, to be basolateral in epithelia; however, ex vivo experiments found it to have a Ca2+-dependent and aPKC-independent membrane targeting mechanism. Overall this work identified a common mechanism for Par substrate polarization and used knowledge of this mechanism to identify a novel Par effector. This dissertation contains previously published coauthored materials as well as unpublished materials. / 2019-05-08
64

Molecular function of the cell polarity protein partner of inscuteable in Drosophila neuroblasts

Nipper, Rick William Jr., 1978- 12 1900 (has links)
xiii, 48 p. : (col. ill.) A print copy of this title is available through the UO Libraries under the call number: SCIENCE QL537.D76 N57 2007 / Asymmetric cell division (ACD) is a unique mechanism employed during development to achieve cellular diversity from a small number of progenitor cells. Cells undergoing ACD distribute factors for self-renewal at the apical cortex and factors for differentiation at the basal cortex. It is critical for proper development that the mitotic spindle be tightly coupled to this axis of polarization such that both sets of proteins are exclusively segregated into the daughter cells. We use ACD in Drosophila neuroblasts as a model system for understanding the molecular mechanisms that govern spindle-cortical coupling. Neuroblasts polarize Partner of Inscuteable (Pins), Gαi and Mushroom Body Defect (Mud) at the apical cell cortex during mitosis. Gαi and Pins are required for establishing cortical polarity while Mud is essential for spindle-cortical alignment. Gαi and Mud interact through Pins GoLoco domains and tetratricopeptide repeats (TPR) respectively, however it is unclear how Mud activity is integrated with Pins and Gαi to link neuroblast cortical polarity to the mitotic spindle. This dissertation describes how Pins interactions with Gαi and Mud regulate Iwo fundamental aspects of neuroblast ACD: cortical polarity and alignment of the spindle with the resulting polarity axis. I demonstrate that Pins is a dynamic scaffolding protein that undergoes a GoLoco-TPR intramolecular interaction, resulting in a conformation of Pins with low Mud and reduced Gαi binding affinity. However, Pins TPR domains fail to completely repress Gαi binding, as a single GoLoco is unaffected by the intramolecular isomerization. Gαi present at the apical cortex specifies Pins localization through binding this "unregulated" GoLoco. Liberation of Pins intramolecularly coupled state occurs through cooperative binding of Gαi and Mud to the other GoLoco and TPR domains, creating a high-affinity Gαi-Pins-Mud complex. This autoregulatory mechanism spatially confines the Pins-Mud interaction to the apical cortex and facilitates proper apical-spindle orientation. In conclusion, these results suggest Gαi induces multiple Pins states to both properly localize Pins and ensure tight coupling between apical polarity and mitotic spindle alignment. / Adviser: Ken Prehoda
65

Regulation of cell polarity and self-renewal in Drosophila neural stem cells

Chabu, Chiswili Yves, 1975- 06 1900 (has links)
xi, 93 p. ; ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / The atypical protein kinase C (aPKC) protein has been implicated in several human tumors yet very little is known about how aPKC is regulated. One mechanism that has been proposed as the possible source of several types of tumor is the defective asymmetric cell division of a small number of tumor stem cells. aPKC is required for cell polarization from nematodes to mammals, in tissues as diverse as epithelia, embryonic blastomeres, and neural progenitors. In Drosophila central nervous system, mitotic neural stem cells, termed neuroblasts, recruit the polarity proteins aPKC at the cell apical cortex. pack restricts the localization of the differentiation factors Miranda, Prospero, Brat, and Numb to the cell's basal cortex. Later during mitosis, the cytokinetic furrow sets unevenly about the neuroblast apical-basal axis to produce a large cell (neuroblast) which will continue to divide and self-renew, while the smaller ganglion mother cell inherits differentiation factors and terminally divides to give rise to a pair of neurons and/or glia. Asymmetric cell division is not only critical for generating cellular diversity, it also ensures that a stable population of neural stem cell is constantly maintained while allowing neurogenesis to occur. Despite its conserved role in cell polarity and tumorigenesis, relatively little is known about aPKC regulators and targets. In a co-authored work, I show that the small Rho GTPase, Cdc42, indirectly regulates aPKC. However, this stimulation is modest and the mutant phenotypes are not fully penetrant suggesting that other regulators exist. To isolate other aPKC regulators and targets, I used a biochemical approach to identify aPKC-interacting proteins, and identified one positive regulator and one negative regulator of aPKC. I show that Dynamin-associated protein-160 (Dap160; related to mammalian Intersectin) is a positive regulator of aPKC. I also show that a regulatory subunit of protein phosphatase 2A (PP2A), negatively regulates aPKC. This dissertation includes both my previously published and my co-authored material. / Adviser: Chris Doe
66

Atypical protein kinase C regulates Drosophila neuroblast polarity and cell-fate specification

Atwood, Scott X. 09 1900 (has links)
xiii, 92 p. ; ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / Cellular polarity is a biological mechanism that is conserved across metazoa and is used in many different biological processes, one of which is stem cell self-renewal and differentiation. Stem cells generate cellular diversity during development by polarizing molecular determinants responsible for directing one daughter cell to maintain stem cell-like qualities and the other daughter cell to initiate a specific cell fate. The stem cell self-renewal versus differentiation choice is critical to avoid overproliferation of stem cells and tumor formation or underdevelopment of tissues and early animal death. Drosophila neural stem cells (neuroblasts) undergo asymmetric cell division (ACD) to populate the fly central nervous system and provide an excellent model system to study processes involving cellular polarity, ACD, stem cell self-renewal, and differentiation. Neuroblasts divide unequally to produce a large, apical self-renewing neuroblast and a small, basal ganglion mother cell that goes on to divide and form two neurons or glia. In this way, a small population of neuroblasts can give rise to thousands of neurons and glia to generate a functional central nervous system. Atypical Protein Kinase C (aPKC) is critical to establish and maintain neuroblast polarity, ACD, stem cell self-renewal, and differentiation. aPKC is part of the evolutionarily conserved Par complex, whose other members include Bazooka and Par-6, and they localize to the neuroblast apical cortex and function to restrict cell-fate determinants into one daughter cell. How aPKC is asymmetrically localized and how its activity translates into cell-fate specification are of incredible importance as apkc mutants where localization is disrupted no longer segregate cell-fate determinants. This work will show that Cdc42 recruits the Par-6/aPKC complex to the neuroblast apical cortex independent of Bazooka. Once there, aPKC phosphorylates the cell-fate determinant Miranda to exclude it from the apical cortex and restrict it basally. Par-6 and Cdc42 regulate aPKC kinase activity though inter- and intramolecular interactions that allow high aPKC kinase activity at the apical cortex and suppressed activity elsewhere. Cdc42 also functions to keep aPKC asymmetrically localized by recruiting the PAK kinase Mushroom bodies tiny to regulate cortical actin and provide binding sites for cortical polarity determinants. This dissertation includes previously published co-authored material. / Adviser: Kenneth Prehoda
67

Molecular Mechanisms Regulating Subcellular Localization and Function of Mitotic Spindle Orientation Determinants

Golub, Ognjen 21 November 2016 (has links)
Proper orientation of the mitotic spindle is essential during animal development for the generation of cell diversity and organogenesis. To understand the molecular mechanisms regulating this process, genetic studies have implicated evolutionarily conserved proteins that function in diverse cell types to align the spindle along an intrinsic cellular polarity axis. This activity is achieved through physical contacts between astral microtubules of the spindle and a distinct domain of force generating proteins on the cell cortex. In this work, I shed light on how these proteins form distinct cortical domains, how their activity is coupled to their subcellular localization, and how they provide cytoskeletal and motor protein connections that are required to generate the forces necessary to position the mitotic spindle. I first discuss the mechanisms by which Mushroom body defect (Mud; NuMA in mammals), provides spindle orientation cues from various subcellular locations. Aside from its known role at the cortex as an adapter for the Dynein motor, I reveal novel isoform-dependent Mud functions at the spindle poles during assembly of the mitotic spindle and astral microtubules, thus implicating Mud in spindle orientation pathways away from the cell cortex. Moreover, through collaborative efforts with former lab members, I describe molecular regulation and assembly of two ‘accessory’ pathways that activate cortical Mud-Dynein, one through the tumor suppressor protein Discs large (Dlg), and another through the signaling protein Dishevelled (Dsh). I demonstrate that the Dlg pathway is spatially regulated by the polarity kinase atypical Protein Kinase C (aPKC) through direct phosphorylation of Dlg. This signal relieves Dlg autoinhibition to promote cortical recruitment of the Dlg-ligand Gukholder (Gukh), a novel microtubule-binding protein that provides an additional connection between astral microtubules and the cortex that is essential for activity of the Dlg pathway. Lastly, I determine that the Dsh accessory pathway provides an alternative cytoskeletal cue by recruiting Diaphanous (Dia), an actin nucleating protein. By demonstrating interchangeability between the two accessory pathways, we conclude that Mud-Dynein is activated by various cytoskeletal cues and that the mode of activation is cell-context dependent. This dissertation includes unpublished and previously published co-authored material. / 10000-01-01
68

The Tip60 chromatin remodeling complex is required for maintenance and polarity of Drosophila neural stem cells

Rust, Katja 18 November 2016 (has links)
No description available.
69

The Role of Farnesyltransferase β-subunit in Neuronal Polarity in Caenorhabditis Elegans

Carr, David, A. January 2013 (has links)
Little is known about the molecular components and interactions of the planar cell polarity pathway that regulate neuronal polarity. This study uses a prkl-1 induced backwards locomotion defect as an array to perform a prkl-1 suppressor screen in C. elegans looking for new components of the planar cell polarity pathway involved in the neuronal polarization of VC4 and VC5. The screen discovered twelve new alleles of vang-1, one new allele of fntb-1 and five new mutations in unknown polarity genes. fntb-1 encodes for the worm ortholog of Farnesyltransferase β-subunit and is important for neuronal polarization. Acting cell and non-cell autonomously, fntb-1 regulates the function and localization of prkl-1 through the recognition of a CAAX motif. Therefore, fntb-1 modifies prkl-1 to regulate the neuronal polarity of VC4 and VC5.
70

A Role for the Planar Cell Polarity Pathway in Neuronal Positioning Along the AP Axis of C. elegans.

Tanner, Raymond January 2014 (has links)
We sought to investigate the role of the Planar Cell Polarity (PCP) pathway in neuronal positioning along the Anterior-Posterior (AP) axis of C. elegans, and chose the worm’s DD-type motor neurons as a model. The six DD neurons (DD1-DD6) are evenly spaced in the ventral nerve cord of wild type animals. Here we showed that mutations in core PCP genes caused DD neuron spacing and positioning defects. prkl-1 double mutant combinations with vang-1 and fmi-1 showed a suppression of the more severe prkl-1 single mutant defects, which was evidence of genetic interactions between these PCP components. We also conducted a candidate screen of Frizzled, Dishevelled, Wnt, and ROCK genes, and found that dsh-1/Dishevelled, mom-2/Wnt and let-502/ROCK also played roles in DD neuronal positioning. Both vang-1 and prkl-1 were found to function within the nervous system to guide DD neuronal positioning, and prkl-1 was further identified as playing a cell autonomous role. The origins of observed DD neuron anterior positioning defects were investigated during embryogenesis, in which 1.5 fold stage prkl-1(ok3182) embryos displayed delayed intercalation of the DD neurons. This represents a novel role for the PCP pathway in mediating DD neuronal intercalation.

Page generated in 0.0786 seconds