151 |
The role of the small Rho GTPases in the signaling mechanisms mediated by the netrin-1 receptor UNC5aPicard, Mariève. January 1900 (has links)
Thesis (M.Sc.). / Written for the Dept. of Anatomy and Cell Biology. Title from title page of PDF (viewed 2008/07/30). Includes bibliographical references.
|
152 |
AKT function and human oncogenesisPark, Sungman. January 2007 (has links)
Dissertation (Ph.D.)--University of South Florida, 2007. / Title from PDF of title page. Document formatted into pages; contains 128 pages. Includes vita. Includes bibliographical references.
|
153 |
Development of a synthetic peptide vaccine and antibody therapeutic for the prevention and treatment of Pseudomonas Aeruginosa infection /Kao, Daniel Joseph. January 2007 (has links)
Thesis (Ph.D. in Pharmacology) -- University of Colorado Denver, 2007. / Typescript. Includes bibliographical references (leaves 203-212; 260-261). Free to UCD affiliates. Online version available via ProQuest Digital Dissertations;
|
154 |
The role of RalA and RalB in cancerFalsetti, Samuel C. January 2008 (has links)
Dissertation (Ph.D.)--University of South Florida, 2008. / Title from PDF of title page. Document formatted into pages; contains 187 pages. Includes vita. Includes bibliographical references.
|
155 |
Phospho-regulation of hippocampal NMDA receptor localization and function /Goebel, Susan Michelle. January 2007 (has links)
Thesis (Ph.D. in Neuroscience) -- University of Colorado Denver, 2007. / Typescript. Includes bibliographical references (leaves 200-233). Free to UCD affiliates. Online version available via ProQuest Digital Dissertations;
|
156 |
Functional Elements of EspF<sub>u</sub>, an Enterohemorrhagic <em>E. coli</em> Effector that Stimulates Actin Assembly: A DissertationSkehan, Brian M. 17 June 2009 (has links)
Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is an attaching and effacing pathogen that upon attachment to host cells, induce characteristic attaching and effacing lesions and formation of F-actin rich pedestals beneath sites of bacterial attachment. EHEC harbors a Type III secretion system through which it delivers dozens of effectors into the host cell. The two secreted effectors critical for EHEC-mediated actin pedestal formation are the translocated intimin receptor (Tir) and EspFU. EspFU consists of an N-terminal secretion signal and a C-terminus containing six tandem 47-residue proline-rich repeats, each of which can bind and activate the actin nucleation promoting factor N-WASP. Structural and functional analyses described here have identified the mechanism of N-WASP activation by EspFU and the minimal domains and specific residues required for this activity. While EspFU and Tir are the only bacterial effectors required for F-actin pedestal formation, recruitment of EspFU to Tir is mediated by an unidentified putative host factor. To identify the host factor responsible for linking these two effectors, a combination of in vitro and functional assays were used to identify the host factor, IRTKS and the residues required for these interactions were defined. Further, the presence of at least two 47-residue repeats in all characterized clinical isolates of canonical EHEC strains led us to address the minimal requirements for EspFU functional domains to promote recruitment to Tir and N-WASP activation. Here we show that two proline-rich elements of EspFU are required for recruitment of EspFU by IRTKS to sites of bacterial attachment. Furthermore, once artificially clustered at the membrane, a single N-WASP binding element of EspFU can induce actin pedestal formation.
|
157 |
Toll-like receptors (TLR) 4 and 2 regulate the innate immune response:study of endotoxin influence in miceHarju, K. (Kirsi) 07 May 2004 (has links)
Abstract
The response of the innate immune system is triggered through Toll-like transmembrane receptors (TLR) that recognize a variety of microbial products. TLR4 is the principal mediator for Gram negative bacterial endotoxin (LPS), whereas TLR2 mediates the response to Gram positive bacteria, mycobacteria, and yeast. Stimulation of TLR activates complex cascades leading first to the production of inflammatory mediators, such as proinflammatory cytokines IL-1 α/β and TNF-α.
Overproduction of inflammatory cytokines as well as failure in the activation of innate immunity are detrimental to the host. Excess inflammatory stimulation leads to a septic shock, which may cause multi-organ failure and even death. The lack of any innate response exposes the host to overwhelming bacterial infections. Appropriate regulation of the innate immune response could be a target for attempts to find therapeutics to septic shock. This experimental study focuses on functional activation of the signaling receptors TLR4 and TLR2 upon a LPS challenge.
An acute inflammation model was used for both in vivo and in vitro experiments. LPS was used to stimulate a mouse macrophage cell line. It was administred intraperitoneally or intra-amniotically to non-pregnant or time-mated mice. The basal and induced mRNA expression levels and the protein production of TLRs as well as the mRNA expression of several inflammatory mediators were studied.
The present study showed that the expression of TLR4 and TLR2 is strain and tissue-specific. At the mRNA level, the levels of TLR4 expression limited the extent of the acute cytokine response. The quality of the cytokine response was modulated by protein aggregates formed by TLR4 on the cell surface. The LPS challenge caused a marked increase in the expression of TLR2 mRNA but not the protein; the significance of this remains to be studied. The study further showed that the expression of TLRs is regulated during the perinatal period, and that the acute cytokine response to LPS in the lung develops during antenatal differentiation.
The present study provides information about how the activation of TLR regulates the acute inflammatory response and further helps to elucidate new targets for the anti-inflammatory strategies in controlling inflammatory events. / Tiivistelmä
"Toll-like"-reseptorit (TLR) ovat solukalvon proteiineja, jotka spesifisesti tunnistavat erilaisia bakteerirakenteita. Infektiossa tällainen bakteerirakenne sitoutuu reseptoriin ja seurauksena solussa käynnistyy synnynnäinen immuunivaste eli tulehdusvälittäjäaineiden tuotto. Liiallinen tulehdusvälittäjäaineiden tuotto voi johtaa septiseen shokkiin eli verenmyrkytykseen, elinvaurioihin ja jopa kuolemaan. Septisen shokin synty voisi olla estettävissä immuunivasteen voimakkuuden tarkoituksenmukaisella säätelyllä. Väitöskirjassa on tutkittu, miten TLR4 ja TLR2 aktivoituvat bakteeri-infektiossa, tarkoituksena selvittää, säätelevätkö reseptorit immuunivasteen käynnistystä ja voimakkuutta solussa.
Tutkimuksessa todettiin, että TLR4:n ja TLR2:n geenien ilmentymistä säädellään eri tavoin eri hiirikannoilla ja eri kudoksissa. TLR4-tason nousu aiheutti voimakkaamman immuunivasteen, kun taas reseptorin matala esiintymistaso laski immuunivasteen voimakkuutta. Lisäksi TLR4:aan solukalvolla sitoutuvat muut proteiinit vaikuttivat immuunivasteen laatuun. Tutkimuksessa todettiin myös, että TLR:n määrä sikiön keuhkoissa rajoittaa keuhkojen immuunivasteen kehittymistä.
Tutkimus antaa tietoa siitä, miten TL-reseptorien aktivaatio säätelee synnynnäistä immuunipuolustusta ja selventää mahdollisuutta kontrolloida immuunivasteen voimakkuutta vaikuttamalla TL-reseptoriin.
|
158 |
Rôle d'un antagoniste de la nucléoline de surface : le N6L, sur la régulation de l’angiogenèse tumorale dans le modèle de l'adénocarcinome ductale pancréatique / Role of cell surface nucleolin antagonist : N6L, on tumor angiogenesis regulation in the pancreatic ductal adenocarcinoma modelGilles, Maud-Emmanuelle 28 September 2015 (has links)
Non transmis / Not transmitted
|
159 |
Construção de sistema que permite a ancoragem de proteína recombinante à superfície celular de levedura. / Construction of a system that allows anchoring of recombinant protein to the cell surface of yeast.Jessica Paola Fuentes Rivera Navarro 03 July 2008 (has links)
Sistemas do tipo cell surface display vêm sendo desenvolvidos para expressão de proteínas heterólogas ancoradas à superfície celular de microrganismos. Várias aplicações foram reportadas destes sistemas, incluindo o emprego como biocatalizador celular, desenvolvimento de vacinas e biosorventes celulares. Neste trabalho foi desenvolvido um sistema que permite ancoragem da proteína glicoamilase de Aspergillus awamori à superfície da parede celular da levedura Saccharomyces cerevisiae. O gene codificador da glicoamilase com sua seqüência sinal foi fusionado ao fragmento do gene codificador da região C-terminal da proteína Flo1p (Flo428), que foi utilizada como âncora (fragmento CG*FC). As células de levedura foram transformadas com o fragmento híbrido CG*FC e os transformantes foram capazes de degradar amido e liberar glicose. A atividade da glicoamilase não foi detectada no meio de cultura, porém está presente no sedimento celular. Estes resultados demonstram que a glicoamilase foi ancorada à parede celular da nova linhagem recombinante de levedura. / Cell surface display systems have being developed for expression of heterologous proteins anchored to the cell surface of microorganisms. Several applications of these systems have been reported, including employment as whole-cell biocatalysts, development of vaccines and cellular biosorvents. In this work it was developed a system that allows the anchoring of the Aspergillus awamori glucoamylase protein to the cell wall surface of the yeast Saccharomyces cerevisiae. The gene encoding glucoamylase with its secretion signal was fused to the gene fragment encoding the C-terminal region of Flo1 protein, used as an anchor (CG*FC fragment). Yeast cells were transformed with hybrid CG*FC fragment and transformants were able to degrade starch and release glucose. Glucoamylase activity was not detected in the culture medium, but only in sedimented cells. These results demonstrate that glucoamylase was anchored to the cell wall of the new yeast recombinant strain.
|
160 |
Využití průtokové cytometrie pro diagnostiku a charakterizaci dědičných poruch glykosylace / Flow cytometry in the diagnostics and characterization of congenital disorders of glycosylationVeselá, Šárka January 2021 (has links)
Congenital disorders of glycosylation (CDG) are rare multisystem metabolic diseases and their number has rapidly grown in recent years. The clinical manifestation includes very broad spectrum of symptoms. In most of all cases CDG are caused by mutations in genes encoding the enzymes of glycosylation pathway. Based on the type of defect, CDG are divided into the following groups: disorders of N-glycosylation or O-glycosylation of proteins, defects in modification of proteins by GPI anchor, disorders of lipid glycosylation and defects that impact multiple glycosylation pathways. The aim of the thesis was to find new biochemical analyses suitable for diagnostics and characterization of CDG patients. The experimental conditions were optimized for selected markers (Sambucus Nigra (SNA) lectin, proaerolysin (FLAER), antibodies to proteins CD55 and CD59) and the staining was applied to cultivated skin fibroblasts from controls and patients diagnosed with CDG by whole-exome sequencing (ATP6AP1-CDG, PIGN-CDG, SLC10A7-CDG, PISD deficiency). The experiments were performed using flow cytometry (FACS) and fluorescent microscopy (FM). The detection of sialylation by SNA lectin and analysis of the mitochondrial membrane potential changes by a fluorescent labelled probe JC-1 with FCCP simulation of mitochondrial...
|
Page generated in 0.3679 seconds