• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 9
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 101
  • 101
  • 37
  • 30
  • 23
  • 19
  • 18
  • 14
  • 13
  • 12
  • 12
  • 10
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Cell of Origin Identification Using Methylation Signatures from Seminal Cell-Free DNA and Heterogenous Cellular Mixtures

Barney, Ryan 13 November 2023 (has links) (PDF)
Infertility is an issue for approximately 12% of couples attempting to have a child. Of this group, 50% of the cases are due to male factor infertility. There are many reasons for decreased fecundity in men, but there remains 10% to 15% of infertile men that are diagnosed with the most severe form of infertility, non-obstructive azoospermia (NOA). A diagnosis of NOA implies the lack of sperm cells in the ejaculate with no physiological reason. The current diagnostic test and treatment consist of microscopic examination of seminal fluid and a biopsy to extract any viable sperm from the testis. This treatment is known to be problematic because of the destructive nature of surgery as well as expense. A non-invasive diagnostic test that could identify the presence of sperm in the testis at the beginning of fertility treatment would inform the patient and the physician about the functionality of the testis and thus lead to more informed decisions about treatment and potentially a decrease in cost. The ability to identify the tissue source of DNA present in the reproductive tract could facilitate a fertility diagnostic tool. Tissue specific epigenetic mechanisms are known to play a role in an organism's development. The identification of an epigenetic signature unique to sperm DNA would allow for the identification of sperm DNA in a heterologous mixture. Our lab has been able to identify a methylation signature that can consistently differentiate between sperm DNA and somatic DNA. We compared the sperm DNA signature with that of blood and testicular tissue and found that there was no overlap in epigenetic markers. To create an assay that could evaluate the presence of sperm DNA we used an Oxford Nanopore next-generation sequencing platform. Sequencing bisulfite converted DNA; we were able to retrieve the methylation status at locations of interest. A bioinformatic tool was created to analyze the thousands of reads obtained and analyze the individual methylation points within single molecules of DNA. To create a more accessible fertility test, we used the sperm DNA analysis tool to evaluate seminal cell-free DNA (cfDNA). The presence of sperm cfDNA in a patient's seminal fluid may indicate that there is sperm somewhere in the male reproductive tract even if the cells are not intact. A clinician could use this information to better advise the patient about treatment and potentially decrease cost of care.
42

High-Yield Cellulosic Hydrogen Production by Cell-Free Synthetic Cascade Enzymes: Minimal Bacterial Cellulase Cocktail and Thermostable Polyphosphate Glucokinase

Liao, Hehuan 09 June 2011 (has links)
Hydrogen production from abundant renewable biomass would decrease reliance on crude oils, achieve nearly zero net greenhouse gas emissions, create more jobs, and enhance national energy security. Cell-free synthetic pathway biotransformation (SyPaB) is the implementation of complicated chemical reaction by the in vitro assembly of numerous enzymes and coenzymes. Two of the biggest challenges for its commercialization are: effective release of fermentable sugars from pretreated biomass, and preparations of thermostable enzymes with low-cost. The hydrolysis performance of 21 reconstituted bacterial cellulase mixtures containing the glycoside hydrolase family 5 Bacillus subtilis endoglucanase, family 9 Clostridium phytofermentans processive endoglucanase, and family 48 Clostridium phytofermentans cellobiohydrolase was investigated on microcrystalline cellulose (Avicel) and regenerated amorphous cellulose (RAC). The optimal ratios for maximum cellulose digestibility were dynamic for Avicel but nearly fixed for RAC. Processive endoglucanase CpCel9 was most important for high cellulose digestibility regardless of substrate type. These results suggested that the hydrolysis performance of reconstituted cellulase cocktail strongly depended on experimental conditions. Thermobifida fusca YX was hypothesized to have a thermophilic polyphosphate glucokinase. T. fusca YX ORF Tfu_1811 encoding a putative PPGK was cloned and the recombinant protein fused with a family 3 cellulose-binding module (CBM-PPGK) was over expressed in Escherichia coli. By a simple one-step immobilization, the half-life time increased to 2 h, at 50 °C. These results suggest that this enzyme was the most thermostable PPGK reported. My studies would provide important information for the on-going project: high-yield hydrogen production from cellulose by cell-free synthetic enzymatic pathway. / Master of Science
43

Cell-Free Biosystems Comprised of Synthetic Enzymatic Pathways: Development of Building Blocks, Immobilization of Enzymes, Stabilization of Cascade Enzymes, and Generation of Hydrogen

Myung, Suwan 08 May 2013 (has links)
The production of hydrogen from low-cost abundant renewable biomass would be vital to sustainable development. Cell-free (in vitro) biosystems comprised of synthetic enzymatic pathways would be a promising biomanufacturing platform due to several advantages, such as high product yield, fast reaction rate, easy control and access, and so on. However, it is essential to produce (purified) enzymes at low costs and stabilize them for long periods to decrease biocatalyst costs. Thermophilic recombinant enzymes as building blocks were discovered and developed: fructose 1,6-bisphosphatase (FBP) from Thermotoga maritime, phosphoglucose isomerase (PGI) from Clostridium thermocellum, triose phosphate isomerase (TIM) from Thermus thermophiles and fructose bisphosphate aldolase (ALD) from T. maritima and T. thermophilus. The recombinant proteins were over-expressed in E. coli, purified and characterized. For purification and stabilization of enzymes, one-step, simple, low-cost purification and immobilization methods were developed based on simple adsorption of cellulose-binding module (CBM)-tagged protein on the external surface of high-capacity regenerated amorphous cellulose. Also, a simple, low-cost purification method of thermophilic enzymes was developed utilizing a combination of heat and ammonium sulfate precipitation. For development of cascade enzymes as building modules (biocatalyst modules), it was discovered that the presence of other enzymes/proteins had a strong synergetic effect on the stabilization of the thermolabile enzyme (e.g., PGI) due to the in vitro macromolecular crowding effect. And substrate channeling among CBM-tagged self-assembled three-enzyme complex (synthetic matabolon) immobilized on the easily-recycled cellulose-containing magnetic nanoparticles can not only increase cascade reaction rates greatly, but also decrease enzyme cost in cell-free biosystems. The high product yield and fast reaction rate of dihydrogen from sucrose was validated in a batch reaction containing fifteen enzymes comprising a non-natural synthetic pathway. The yield of dihydrogen production from 2 mM of sucrose was 96.7 % compared to theoretical yield at 37 °C. The maximum rate was increased 3.1 fold when the substrate concentration was increased from 2 to 50 mM in a fed-batch reaction. The research and development of cell-free biosystems for biomanufacturing require more efforts, especially in low-cost recombinant thermostable enzymes as building blocks, efficient cofactor recycling, enzyme and cofactor stabilization, and fast reaction rates. / Ph. D.
44

Detection of Cell-free Tumor DNA in Liquid Biopsies of Dogs with B cell Lymphoma: A Biomarker Discovery

Vadlamudi, Sai Navya 12 August 2024 (has links)
Lymphoma is a common hematopoietic malignancy in canines. Current diagnostic techniques to diagnose lymphoma are often invasive and expensive. Additionally, tumor heterogeneity complicates the accurate classification and diagnosis of specific subtypes, hindering the development of targeted therapy and prognostic assessments. We propose a minimally invasive liquid biopsy technique involving blood collection to detect cell-free DNA from tumors using Next-generation sequencing. We hypothesize that identical tumor aberrations can be found in matching plasma and tumor DNA. Five dogs diagnosed with B-cell lymphoma through flow cytometry or PAAR were enrolled in the study. Samples collected included: (1) blood for plasma (cfDNA), (2) tumor tissue fine-needle aspirates (tumor DNA), and (3) buccal swabs (genomic DNA, germline control). Whole Genome Sequencing was performed using Illumina NovaSeq 6000, and the sequenced output was analyzed with bioinformatics tools to detect somatic variants in plasma and tumor samples. Our results revealed many shared somatic variants between matched cfDNA and tumor DNA samples, with 1.7-49% of tumor variants also found in corresponding plasma samples. Shared variants constituted only 0.5-9% of all plasma somatic variants. Specific B-cell lymphoma mutations were identified in cfDNA, including MYC, POT1, and TRAF3, alongside other cancer-related genes. Tumor samples showed mutations in genes associated with canine and human B-cell lymphoma. This study suggests that tumor-specific genomic mutations can be detected in plasma, supporting the potential of liquid biopsy as a less invasive diagnostic tool. However, cfDNA may not capture the full genetic heterogeneity of tumors due to low tumor-derived DNA content in limited plasma volumes. / Master of Science / Lymphoma is a type of blood cancer affecting white blood cells. Canine lymphoma is a common neoplasia, with an incidence rate of 20 to 100 cases per 100,000 dogs, making it a significant research focus. Current diagnostic methods are invasive and costly. Additionally, the wide variety of tumor types in lymphoma makes it challenging to determine the exact subtypes, which is crucial for selecting the best treatment approach. To overcome these challenges, we proposed a less invasive method known as "liquid biopsy". This technique involves taking a blood sample of a dog to find cell-free DNA from tumor cells using Next-Generation Sequencing technologies. We aimed to see if blood DNA could provide the same information as tumor DNA. In our study, we worked with five dogs diagnosed with B-cell lymphoma through traditional methods. We collected blood, tissue from needle biopsies, and buccal swabs from each dog. We then performed DNA extraction and sequencing on these samples. Our findings showed that 1.7-50% of the mutations in tumor DNA were also detected in matched blood DNA, though these represented only a small fraction of all changes found in blood samples. Additionally, the blood samples also revealed mutations related to canine B-cell lymphoma in genes like MYC, POT1, and TRAF3. In conclusion, our study supports the use of liquid biopsy as a feasible and less invasive method to diagnose lymphoma in dogs. However, they might not show all genetic variations of the tumor due to limited tumor DNA content.
45

Etude de l'assemblage de la NADPH oxydase du phagocyte / Study of the phagocyte NADPH oxidase assembly

Karimi, Gilda 04 February 2014 (has links)
La NADPH oxydase du phagocyte est une enzyme impliquée dans la défense immunitaire contre les pathogènes. Après activation du phagocyte, cette enzyme produit des ions superoxyde par réduction du dioxygène par le NADPH. Elle est constituée de quatre sous- unités cytosolubles (p47phox ; p67phox ; p40phox et Rac), et deux membranaires (gp91 ; p22phox). Son activation fait intervenir un processus complexe qui met en jeu des changements d’interaction entre les protéines la constituant et qui permet l’assemblage des six sous- unités. Afin d’obtenir des informations sur les processus d’assemblage et d’activation, j’ai reconstitué le complexe dans un système cell free à l’aide de protéines recombinantes pour pouvoir contrôler tous les paramètres. Dans ce travail nous avons comparé les modes d’activation de p47phox par phosphorylation, par mutation substitutionelle sérine - aspartate en position S303,S304 et S328 pour mimer la phosphorylation et enfin par addition d’acide arachidonique (AA) activateur connu de l’enzyme in vitro mais aussi in vivo. Bien qu’il ai été montré que ces trois méthodes ouvrent la protéine vers une conformation ayant des propriétés similaires, nous avons trouvé que les effets de ces méthodes d’activation sont significativement différents. Ainsi, les changement de conformation observés par dichroisme circulaire, sont dissemblables. Pour p47phox, l’addition de AA déstructure la protéine. La phosphorylation induit un déplacement bathochrome des bandes de CD qualitativement similaire, alors que les mutations S-D de p47phox provoquent un déplacement opposé. Pour le complexe p47phox-p67phox l’addition d’AA destructure le mélange tandis que la mutation induit relativement peu de changement. Nous avons mesuré les constantes de dissociation Kd du complexe p47phox-p67phox. Alors que pour les protéines « sauvages », le Kd est faible (4±2 nM), les mutations de p47phox ainsi que l’addition d’AA augmentent cette valeur jusqu’à environ 50 nM, montrant une diminution de l’affinité entre p47phox-p67phox. De même, sur le complexe entier, l’effet de la phosphorylation de p47phox est différent de la mutation. Nous avons mesuré les valeurs de EC50 relatives à p67phox pour les différentes formes de p47phox. L’activation de p47phox par phosphorylation diminue l’EC₅₀, alors que les doubles ou triple mutations augmentent sa valeur. Nous avons confirmé que la phosphorylation et la mutation sont insuffisantes pour activer l’enzyme. La présence de AA est indispensable pour le fonctionnement du complexe. L’ordre de fixation des sous unités cytosoliques semble indifférent mais il faut que tous les composants soient présents lors de l’ajout de AA. Enfin, la délétion de p47phox dans la partie C-terminale (aa 343 à 390, domaine d’interaction avec p67phox) il n’y a plus de formation du dimère mais l’enzyme fonctionne normalement. Ces résultats apportent des éléments nouveaux sur le rôle de la dimérisation p47 phox-p67 phox, non indispensable à l’activité du système et sur le rôle mineur de la phosphorylation dans l’activation de la NADPH oxydase in vitro. / The NADPH oxidase of phagocytes is an enzyme involved in the innate defense of organisms against pathogens. After phagocyte activation, this enzyme produces superoxide ions by reduction of dioxygen by NADPH. It is constituted of four cytosolic sub-units (p47phox ; p67phox ; p40phox et Rac) and two membrane proteins (gp91 ; p22phox). Its activation takes place through a complex process that involves protein-protein interaction changes leading to assembly and functionning of the catalytic core. In order to obtain information on this process, I have reconstituted the enzyme in a cell free systeme using recombinant proteins, to be able to fully control all the measurement conditions. In this work, we have compared different activation modes of p47phox i) phosphorylation; ii) substitution serine - aspartate by mutations at positions S303, S304 and S328 to mimic phosphorylation; iii) addition of arachidonic acid (AA), a well known activator molecule in vitro. It has been shown that these three activating methods transform p47phox to an open configuration with similar characteristics. However, we have found that the effects of these methods are significantly different. Indeed, the conformational changes observed by circular dichroism are different. For p47phox, the addition of AA destructures the protein. Its phosphorylation induces a bathochromic displacement of the bands, whereas the mutations S-D lead to an opposite displacement. For the dimer p47phox-p67phox , the addition of AA destructures the proteins while mutations induce hardly no changes. We have measured the dissociation constant Kd of the complex p47phox-p67phox. For wild type proteins, Kd value is low (4±2 nM), while mutations of p47phox as well as addition of AA increase its value up to 50 nM, showing a decrease of affinity between p47phox and p67phox. Moreover, on the whole complex, the effect of phosphorylation of p47phox is different from mutations. We have shown that the EC50 values relative to p67phox are sensitive to the various modifications of p47phox. Phosphorylation of p47phox decreases EC₅₀, while double or triple mutations increase its value. We have confirmed that phosphorylation and mutation are not sufficient to activate the enzyme. The presence of AA is a prerequisite for the functionning of the complex, i.e. production of superoxide. The binding order of the cytosolic proteins seems random but it is necessary that all the components be present during the activation by AA. Finally, deletion of the C terminal part of p47phox (aa 343 to 390, interaction domain with p67phox) leads to the absence of dimer formation but does not affect the enzyme activity. These results bring new information on the role of dimerisation of p47-p67 and on that of phosphorylation in the activation of NADPH oxidase in vitro.
46

Advancing Cell-Free Protein Synthesis Systems for On-Demand Next-Generation Protein Therapeutics and Clinical Diagnostics

Zhao, Emily Ann Long 16 December 2021 (has links)
Recombinant proteins have many medical and industrial applications, but their use is complicated by commercial production and stability constraints. These issues are particularly challenging for recombinant proteins used in pharmaceutical therapeutics and clinical diagnostics. Expensive production and distribution limit the accessibility of therapeutics and diagnostics especially in the developing world. Additionally, clinical use of recombinant proteins face further challenges within biological systems including biological degradation and immunogenicity. To increase the accessibility of recombinant proteins, the cost and inefficiencies of protein manufacturing and distribution need to be significantly reduced. A powerful tool to aid in this endeavor is cell-free protein synthesis (CFPS) technology. CFPS is a versatile platform for recombinant protein production due to its open reaction environment, flexible reaction conditions, and rapid protein expression capabilities. These avoid the disadvantages of conventional manufacturing and present the capability of on-demand protein therapeutic production outside of centralized facilities. To improve the efficacy of recombinant proteins for medicinal use, protein engineering techniques such as PEGylation, or the conjugation of PEG polymers to protein surfaces, can be employed. PEGylation is widely used to enhance the pharmacokinetic properties of protein therapeutics. Deciphering optimal PEG conjugation sites is a continuing area of research that can be facilitated by CFPS systems that enable high-throughput, site-specific PEGylation. This dissertation presents advances in CFPS technology to promote increased accessibility and stability of life-saving therapeutics and diagnostics. The work presented here (1) improves on-demand therapeutic production capabilities by creating shelf-stable, endotoxin-free CFPS systems, (2) aids the rational design of next-generation PEGylated protein therapeutics through an in silico-in vitro CFPS screening platform, and (3) advances the development of portable clinical diagnostics for rapid and sustainable deployment at point-of-care through CFPS biosensor technology. The innovations of this dissertation are described in four publications. Specifically, an endotoxin-free CFPS system lyophilized with lyoprotectants is demonstrated that shows improved shelf-stability over standard lyophilized systems. A streamlined procedure for preparing endotoxin-free extract using auto-induction media is presented that significantly reduces CFPS preparation labor and time. A combinatorial screening approach is demonstrated in which coarse-grain molecular simulation informs PEGylation site selection as verified by CFPS experimental results. An inexpensive paper-based, saliva-activated CFPS biosensor platform is developed for the detection of SARS-CoV-2 sequences.
47

Sensitive Quantification of Cell-Free Tumor DNA for Early Detection of Recurrence in Colorectal Cancer

Stasik, Sebastian, Mende, Marika, Schuster, Caroline, Mahler, Sandra, Aust, Daniela, Tannapfel, Andrea, Reinacher-Schick, Anke, Baretton, Gustavo, Krippendorf, Claudia, Bornhäuser, Martin, Ehninger, Gerhard, Folprecht, Gunnar, Thiede, Christian 08 April 2024 (has links)
The detection of plasma cell–free tumor DNA (ctDNA) is prognostic in colorectal cancer (CRC) and has potential for early prediction of disease recurrence. In clinical routine, ctDNA-based diagnostics are limited by the low concentration of ctDNA and error rates of standard next-generation sequencing (NGS) approaches. We evaluated the potential to increase the stability and yield of plasma cell–free DNA (cfDNA) for routine diagnostic purposes using different blood collection tubes and various manual or automated cfDNA extraction protocols. Sensitivity for low-level ctDNA was measured in KRAS-mutant cfDNA using an error-reduced NGS procedure. To test the applicability of rapid evaluation of ctDNA persistence in clinical routine, we prospectively analyzed postoperative samples of 67 CRC (stage II) patients. ctDNA detection was linear between 0.0045 and 45%, with high sensitivity (94%) and specificity (100%) for mutations at 0.1% VAF. The stability and yield of cfDNA were superior when using Streck BCT tubes and a protocol by Zymo Research. Sensitivity for ctDNA increased 1.5-fold by the integration of variant reads from triplicate PCRs and with PCR template concentration. In clinical samples, ctDNA persistence was found in ∼9% of samples, drawn 2 weeks after surgery. Moreover, in a retrospective analysis of 14 CRC patients with relapse during adjuvant therapy, we successfully detected ctDNA (median 0.38% VAF; range 0.18–5.04% VAF) in 92.85% of patients significantly prior (median 112 days) to imaging-based surveillance. Using optimized pre-analytical conditions, the detection of postoperative ctDNA is feasible with excellent sensitivity and allows the prediction of CRC recurrence in routine oncology testing.
48

Molekulárně genetická charakterizace materiálu z lidských choriových klků / Molecular genetic characterization of material from human chorionic villi

Laššáková, Soňa January 2015 (has links)
No description available.
49

Immune maturation and lymphocyte characteristics in relation to early gut bacteria exposure

Björkander, Sophia January 2016 (has links)
At birth, the immune system is immature and the gut microbiota influences immune maturation. Staphylococcus aureus (S. aureus) and lactobacilli are part of the neonatal gut microbiota and have seemingly opposite effects on the immune system. S. aureus is a potent immune activator and early-life colonization associates with higher immune responsiveness later in life. Lactobacilli-colonization associates with reduced allergy-risk and lower immune responsiveness. Further, lactobacilli modulate immune-activation and have probiotic features. Here, we investigated S. aureus-induced activation of human lymphocytes, including T regulatory cells (Tregs), conventional T-cells (CD4+ and CD8+), unconventional T-cells (γδ T-cells and MAIT-cells) and NK-cells from children and adults, together with the modulatory effect of lactobacilli on immune-activation. Further, early-life colonization with these bacteria was related to lymphocyte-maturation, plasma cytokine- and chemokine-levels and allergy.  S. aureus cell free supernatant (CFS) and staphylococcal enterotoxin (SE) A induced an increased percentage of FOXP3+ Tregs and of CD161+, IL-10+, IFN-γ+ and IL-17A+ Tregs (Paper I). The same pattern was observed in children with a lower degree of activation, possibly due to lower CD161-expression and poor activation of naive T-cells (Paper II). S. aureus-CFS induced IFN-γ-expression, proliferation and cytotoxic capacity in conventional and unconventional T-cells, and NK-cells. SEA, but not SEH, induced activation of unconventional T-cells and NK-cells by unknown mechanism(s) (Paper III, extended data). Lactobacilli-CFS reduced S. aureus-induced lymphocyte activation without the involvement of IL-10, Tregs or monocytes, but possibly involving lactate (Paper III). Early-life colonization with S. aureus associated with increased percentages of CD161+ and IL-10+ Tregs while lactobacilli-colonization negatively correlated with the percentage of IL-10+ Tregs later in life (Paper II). Allergic disease in childhood associated with double allergic heredity, being born wintertime and with higher plasma levels of TH2-, TH17- and TFH-related chemokines early in life. Lactobacilli-colonization associated with lower prevalence of allergy, reduced chemokine-levels and increased levels of IFN-γ in plasma (Paper IV).    This thesis provides novel insights into S. aureus- and SE-mediated activation of Tregs, unconventional T-cells and NK-cells and suggests an overall impairment of immune-responsiveness towards this bacterium in children. Further, S. aureus-colonization may influence the maturation of peripheral Tregs. Our data show that lactobacilli potently dampen lymphocyte-activation in vitro and that colonization associates with Treg-responsiveness, altered plasma cytokine- and chemokine-levels and with remaining non-allergic, thereby supporting the idea of lactobacilli as important immune-modulators. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p><p> </p>
50

Insight into the mitochondrial apoptotic pathway : The interplay of the pro-apoptotic Bax protein with oxidized phospholipids and its counterplayer, the pro-survival Bcl-2 protein

Wallgren, Marcus January 2012 (has links)
Apoptosis plays a crucial role in multicellular organisms by preserving tissue homeostasis and removing harmful cells. The anti-apoptotic B-cell CLL/lymphoma 2 (Bcl-2) and the pro-apoptotic Bcl-2-associated X protein (Bax) act as major regulators of the mitochondrial apoptotic pathway. Activation of Bax via stress signals causes its translocation to the mitochondrial outer membrane (MOM). There, Bax forms homo-oligomeric pores, leading to the release of apoptogenic factors, caspase activation and ultimately cell death. However, the underlying mechanism for the recruitment and pore forming activity of Bax is still not elucidated. Nevertheless, the mitochondrial membrane system seems to play an active and crucial role, presumably being directly involved in the onset of the mitochondrial apoptosis. Since the formation of reactive oxygen species (ROS) is a common stress signal and one of the hallmarks of the mitochondrial apoptosis, direct damage can occur to these membranes by the generation of oxidized phospholipids (OxPls), whose presence can crucially influence the pro-apoptotic action of Bax there. To better understand the impact of OxPls on membranes as well as their potential role in the mitochondrial apoptotic process, defined OxPl species were incorporated into phospholipid vesicles and studied with various biophysical techniques. Differential scanning calorimetry (DSC) and solid state nuclear magnetic resonance (NMR) spectroscopy were used to gain insight into changes in membrane properties in the presence of OxPls. In addition to circular dichroism (CD) spectroscopy, DSC and solid state NMR were furthermore performed to elucidate the impact of OxPls on Bax-membrane interactions. The occurrence of OxPls gave rise to dramatic changes in membrane organization and dynamics, manifested as lateral phase separation into OxPl-rich and -poor domains and modified hydration at the membrane interface. The presence of OxPls also had a great impact on the interaction between Bax and mitochondria-mimicking vesicles, strongly promoting the association of the protein with the membrane. At the MOM, Bax is believed to be inhibited by Bcl-2. How this inhibition occurs is still a mystery due to the lack of biophysical information on Bcl-2, in particular on the full-length protein variant. Since Bcl-2 is also one of the main culprits in the progression of various forms of cancer, knowledge of the structural and mechanistic properties of the full-length protein is essential for a fundamental understanding of its function at a molecular level. To this end, a method for the production of full-length Bcl-2 was developed. By performing cell-free protein synthesis, preparative amounts of the protein were obtained, which enabled a biophysical characterization of the putative interaction between Bax and Bcl-2 using CD and fluorescence spectroscopy. A protocol for the reconstitution of Bcl-2 into proteoliposomes was also developed, promising for future studies of the full-length protein in its native membrane environment; a prerequisite to fully understand its pro-survival functions as well as providing crucial information for the design of novel anti-cancer drugs.

Page generated in 0.0606 seconds