• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 7
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional characterization of the novel centrosomal protein Nlp (ninein-like protein)

Casenghi, Martina. Unknown Date (has links) (PDF)
University, Diss., 2004--München. / Enth. 1 Sonderabdr. aus: Developmental Cell ; 5. 2003.
2

Interaktionen des testikulären outer dense fibre protein 2 (ODF 2)bei der zellulären Organisation / Interactions of the testicular outer dense fibre protein 2 (ODF 2) during cellular organisation

Donkor, Fatima 31 October 2006 (has links)
No description available.
3

Functional analyses of microtubule and centrosome-associated proteins in Dictyostelium discoideum

Samereier, Matthias January 2011 (has links)
Understanding the role of microtubule-associated proteins is the key to understand the complex mechanisms regulating microtubule dynamics. This study employs the model system Dictyostelium discoideum to elucidate the role of the microtubule-associated protein TACC (Transforming acidic coiled-coil) in promoting microtubule growth and stability. Dictyostelium TACC was localized at the centrosome throughout the entire cell cycle. The protein was also detected at microtubule plus ends, however, unexpectedly only during interphase but not during mitosis. The same cell cycle-dependent localization pattern was observed for CP224, the Dictyostelium XMAP215 homologue. These ubiquitous MAPs have been found to interact with TACC proteins directly and are known to act as microtubule polymerases and nucleators. This work shows for the first time in vivo that both a TACC and XMAP215 family protein can differentially localize to microtubule plus ends during interphase and mitosis. RNAi knockdown mutants revealed that TACC promotes microtubule growth during interphase and is essential for proper formation of astral microtubules in mitosis. In many organisms, impaired microtubule stability upon TACC depletion was explained by the failure to efficiently recruit the TACC-binding XMAP215 protein to centrosomes or spindle poles. By contrast, fluorescence recovery after photobleaching (FRAP) analyses conducted in this study demonstrate that in Dictyostelium recruitment of CP224 to centrosomes or spindle poles is not perturbed in the absence of TACC. Instead, CP224 could no longer be detected at the tips of microtubules in TACC mutant cells. This finding demonstrates for the first time in vivo that a TACC protein is essential for the association of an XMAP215 protein with microtubule plus ends. The GFP-TACC strains generated in this work also turned out to be a valuable tool to study the unusual microtubule dynamics in Dictyostelium. Here, microtubules exhibit a high degree of lateral bending movements but, in contrast most other organisms, they do not obviously undergo any growth or shrinkage events during interphase. Despite of that they are affected by microtubuledepolymerizing drugs such as thiabendazole or nocodazol which are thought to act solely on dynamic microtubules. Employing 5D-fluorescence live cell microscopy and FRAP analyses this study suggests Dictyostelium microtubules to be dynamic only in the periphery, while they are stable at the centrosome. In the recent years, the identification of yet unknown components of the Dictyostelium centrosome has made tremendous progress. A proteomic approach previously conducted by our group disclosed several uncharacterized candidate proteins, which remained to be verified as genuine centrosomal components. The second part of this study focuses on the investigation of three such candidate proteins, Cenp68, CP103 and the putative spindle assembly checkpoint protein Mad1. While a GFP-CP103 fusion protein could clearly be localized to isolated centrosomes that are free of microtubules, Cenp68 and Mad1 were found to associate with the centromeres and kinetochores, respectively. The investigation of Cenp68 included the generation of a polyclonal anti-Cenp68 antibody, the screening for interacting proteins and the generation of knockout mutants which, however, did not display any obvious phenotype. Yet, Cenp68 has turned out as a very useful marker to study centromere dynamics during the entire cell cycle. During mitosis, GFP-Mad1 localization strongly resembled the behavior of other Mad1 proteins, suggesting the existence of a yet uncharacterized spindle assembly checkpoint in Dictyostelium. / Die Kenntnis der Funktion von Mikrotubuli-assoziierenden Proteinen (MAPs) ist von grundlegender Bedeutung für das Verständnis der Mikrotubuli-Dynamik und deren Regulation. Im Rahmen dieser Arbeit wurde die Rolle des Mikrotubuli-assoziierenden Proteins TACC (Transforming acidic coiled-coil), welches in vielen Organismen an der Stabilisierung und dem Wachstum von Mikrotubuli beteiligt ist, im Modellorganismus Dictyostelium discoideum untersucht. Das Dictyostelium TACC Protein konnte während des gesamten Zellzyklus am Centrosom nachgewiesen werden. Darüber hinaus wurde es an den Mikrotubuli-Plus-Enden vorgefunden, überraschenderweise jedoch ausschließlich während der Interphase. Die gleiche Zellzyklusabhängige Lokalisation wurde für CP224 beobachtet, einem Homologen der XMAP215 Proteine in Dictyostelium. Diese ubiquitären MAPs sind konservierte, direkte Interaktionspartner der TACC Proteine und spielen eine zentrale Rolle bei der Nukleation und der Polymerisation von Mikrotubuli. Durch diese Arbeit konnte erstmals in vivo gezeigt werden, dass TACC und XMAP215 Proteine während der Interphase und Mitose unterschiedlich stark mit Mikrotubuli-Plus-Enden assoziiert sein können. Durch Untersuchungen an Knockdown-Mutanten wurde ersichtlich, dass Dictyostelium TACC eine Rolle beim Mikrotubuli-Wachstum während der Interphase spielt und über weite Strecken der Mitose essentiell für die Ausbildung von astralen Mikrotubuli ist. In anderen Organismen konnte als Ursache instabiler Mikrotubuli in TACC Mutanten häufig unzureichendes Rekrutieren des jeweiligen XMAP215 Proteins an das Centrosom ausgemacht werden. Um entsprechende Auswirkungen auf die Lokalisation von CP224 durch den Knockdown von TACC in Dictyostelium zu untersuchen, wurden Fluorescence Recovery after Photobleaching (FRAP) Experimente durchgeführt. Diese ergaben, dass CP224 auch in Abwesenheit von TACC in vollem Umfang an die Centrosomen und Spindelpole rekrutiert wird. Anders als im Wildtyp, konnte in TACC Mutanten allerdings kein CP224 an den Mikrotubuli-Plus-Enden nachgewiesen werden. Somit konnte erstmals in vivo gezeigt werden, dass ein TACC Protein essentiell für die Assoziation eines XMAP215 Proteins mit den Mikrotubuli-Plus-Enden ist. Im Laufe der genannten Experimente stellte sich heraus, dass sich die GFP-TACC Stämme aufgrund ihrer markierten Plus-Enden sehr gut für Untersuchungen zur ungewöhnlichen Mikrotubuli-Dynamik in Dictyostelium eignen. Zwar weisen Mikrotubuli hier über die gesamte Länge ausgeprägte Krümmungs- und Seitwärtsbewegungen auf, es können jedoch im Vergleich zu anderen Organismen während der Interphase kaum Wachstums- oder Verkürzungsvorgänge beobachtet werden. Dennoch können Dictyostelium Mikrotubuli unter Verwendung von Agenzien wie Thiabendazol oder Nocodazol, welche ausschließlich auf dynamische Mikrotubuli wirken, signifikant verkürzt werden. Durch FRAP Experimente und Einsatz von 5D Fluoreszenz-Mikroskopie an lebenden Zellen konnte in dieser Arbeit erstmalig nachgewiesen werden, dass Dictyostelium Mikrotubuli nur in der Zellperipherie, nicht aber im pericentrosomalen Bereich dynamisch sind. Die Identifikation bislang unbekannter Bestandteile des Dictyostelium Centrosoms erfuhr in den vergangenen Jahren große Fortschritte. Ein von unserer Gruppe durchgeführter Proteomics-Ansatz brachte eine Vielzahl potentiell centrosomaler Proteine zu Tage, von welchen bereits viele am Centrosom nachgewiesen werden konnten. Der zweite Teil dieser Arbeit befasst sich mit der Charakterisierung dreier noch unbekannter Proteine aus dem Proteomics-Ansatz, Cenp68, CP103 und dem Dictyostelium Homologen des Spindle Assembly Checkpunkt Proteins Mad1. Hierbei zeigte sich, dass lediglich CP103 Bestandteil isolierter, Mikrotubuli-freier Centrosomen ist, während Cenp68 an die Centromere und Mad1 an die Kinetochoren lokalisieren. Die Charakterisierung von Cenp68 umfasste außerdem die Herstellung eines polyklonalen anti-Cenp68 Antikörpers, das Suchen nach Interaktionspartnern und die Erzeugung eines Cenp68 Knockout-Stammes. Letzterer wies jedoch keinen offensichtlichen Phänotyp auf. Das Verhalten des Dictyostelium Mad1 Proteins während der Mitose stimmte in großen Teilen mit dem anderer Mad1 Proteine überein, was auf die Existenz eines bislang unerforschten Spindle Assembly Chekpunkts in Dictyostelium hinweisen könnte.
4

Molekulare Charakterisierung von NE81 und CP75, zwei kernhüllen- und centrosomassoziierten Proteinen in Dictyostelium discoideum / Molecular characterization of NE81 and CP75, two nuclear envelope and centrosome associated proteins in Dictyostelium discoideum

Krüger, Anne January 2011 (has links)
Lamine bilden zusammen mit laminassoziierten Proteinen die nukleäre Lamina. Diese ist notwendig für die mechanische Stabilität von Zellen, die Organisation des Chromatins, der Genexpression, dem Fortgang des Zellzyklus und der Zellmigration. Die vielfältigen Funktionen der Lamine werden durch die Pathogenese von Laminopathien belegt. Zu diesen Erkrankungen, welche ihre Ursache in Mutationen innerhalb der laminkodierenden Gene, oder der Gene laminassoziierter bzw. laminprozessierender Proteine haben, zählen unter anderem das „Hutchinson-Gilford Progerie Syndrom“, die „Emery-Dreifuss“ Muskeldystrophie und die dilatierte Kardiomyopathie. Trotz der fundamentalen Bedeutung der Lamine, wurden diese bisher nur in Metazoen und nicht in einzelligen Organismen detektiert. Der amöbide Organismus Dictyostelium discoideum ist ein haploider Eukaryot, der häufig als Modellorganismus in den verschiedensten Bereichen der Zellbiologie eingesetzt wird. Mit der Entdeckung von NE81, einem Protein das mit der inneren Kernhülle von Dictyostelium discoideum assoziiert ist, wurde erstmals ein Protein identifiziert, dass man aufgrund seiner Eigenschaften als laminähnliches Protein in einem niederen Eukaryoten bezeichnen kann. Diese Merkmale umfassen die Existenz lamintypischer Sequenzen, wie die CDK1-Phosphorylierungsstelle, direkt gefolgt von einer zentralen „Rod“-Domäne, sowie eine typische NLS und die hoch konservierte CaaX-Box. Für die Etablierung des NE81 als „primitives“ Lamin, wurden im Rahmen dieser Arbeit verschiedene Experimente durchgeführt, die strukturelle und funktionelle Gemeinsamkeiten zu den Laminen in anderen Organismen aufzeigen konnten. Die Herstellung eines polyklonalen Antikörpers ermöglichte die Verifizierung der subzellulären Lokalisation des NE81 durch Elektronenmikroskopie und gab Einblicke in das Verhalten des endogenen Proteins innerhalb des Zellzyklus. Mit der Generierung von NE81-Nullmutanten konnte demonstriert werden, dass NE81 eine wichtige Rolle bei der nukleären Integrität und der Chromatinorganisation von Zellen spielt. Des Weiteren führte die Expression von zwei CaaX-Box deletierten NE81 - Varianten dazu, den Einfluss des Proteins auf die mechanische Stabilität der Zellen nachweisen zu können. Auch die Bedeutung der hochkonservierten CaaX-Box für die Lokalisation des Proteins wurde durch die erhaltenen Ergebnisse deutlich. Mit der Durchführung von FRAP-Experimente konnte außerdem die strukturgebende Funktion von NE81 innerhalb des Zellkerns bekräftigt werden. Zusätzlich wurde im Rahmen dieser Arbeit damit begonnen, den Einfluss der Isoprenylcysteincarboxylmethyltransferase auf die Lokalisation des Proteins aufzuklären. Die Entdeckung eines laminähnlichen Proteins in einem einzelligen Organismus, der an der Schwelle zu den Metazoen steht, ist für die evolutionäre Betrachtung der Entwicklung der sozialen Amöbe und für die Erforschung der molekularen Basis von Laminopathien in einem einfachen Modellorganismus sehr interessant. Die Arbeit mit Dictyostelium discoideum könnte daher Wege aufzeigen, dass Studium der Laminopathien am Tiermodell drastisch zu reduzieren. In den letzten Jahren hat die Erforschung unbekannter Bestandteile des Centrosoms in Dictyostelium discoideum große Fortschritte gemacht. Eine zu diesem Zwecke von unserer Arbeitsgruppe durchgeführte Proteomstudie, führte zur Identifizierung weiterer, potentiell centrosomaler Kandidatenproteine. Der zweite Teil dieser Arbeit beschäftigt sich mit der Charakterisierung eines solchen Kandidatenproteins, dem CP75. Es konnte gezeigt werden, dass CP75 einen echten, centrosomalen Bestandteil darstellt, der mikrotubuli-unabhängig mit der Core Struktur des Zellorganells assoziiert ist. Weiterhin wurde deutlich, dass die Lokalisation am Centrosom in Abhängigkeit vom Zellzyklus erfolgt und CP75 vermutlich mit CP39, einem weiteren centrosomalen Core Protein, interagiert. / Lamins build the nuclear lamina together with lamin-associated proteins. The latter is required for mechanical stabilization of cells, chromatin organization, gene expression, cell cycle progression and cell migration. This became evident by the pathogenesis of laminopathies. Laminopathies are diseases which arise from mutations in genes encoding lamins, lamin-associated-or lamin-processing proteins. Prominent examples are the „Hutchinson-Gilford progeria syndrome“, the „Emery-Dreifuss“muscular dystrophy and dilated cardiomyopathy. Despite their universal importance, lamins have only been found in metazoans, but not in unicellular organisms so far. The amoeboid organism Dictyostelium discoideum is a haploid eukaryote widely used in different fields of cell biology. With the discovery of NE81, a protein associated with the inner nuclear membrane of Dictyostelium discoideum, for the first time a protein was identified, whose properties jutify denomination as a lamin-like protein in a lower eukaryote. This is based on the presence of lamin-typical sequences such as a CDK1 phosphorylation consensus sequence, followed by a central rod domain, a typical nuclear localization sequence and the highly conserved CaaX box. For the verification of NE81 as a primitive lamin, various different experiments were conducted in the frame of this work, which revealed structural and functional similarities to lamins of other organisms. Analysis of the behavior of the endogenous protein in cell cycle and the verification of the subcellular localization with electron microscopy was done with the generation of a polyclonal antibody. With a NE81 null mutant, it could be shown, that NE81 plays an important role in nuclear integrity and chromatin organization. The expression of two CaaX-box deleted protein variants confirmed the influence of NE81 on the mechanical stability of cells. These results furthermore underlined the importance of the presence of the highly conserved CaaX-box. FRAP-experiments further emphasized the structural function of NE81 in the nucleus. Furthermore, first steps were undertaken to determine the influence of the Isoprenylcysteinecarboxylmethyltransferase on the localization of NE81. In the light of evolution the discovery of a lamin-like protein in a unicellular organism is very interesting and could provide a simple experimental system for studies of the molecular basis of laminopathies. Hence, the study on laminopathies in animal models could be reduced dramatically. The identification of unknown centrosomal components in Dictyostelium discoideum has made significant proceedings in the last years. A proteomic approach which was accomplished for this purpose, yielded several potential centrosomal candidate proteins. The second part of this work focuses on the characterization of one of these proteins, CP75. It could be shown that CP75 is a genuine, centrosomal component, which is associated with the centrosomal core structure independently of microtubules. Furthermore, it could be demonstrated, that the localization of CP75 is cell cycle-dependent and that it presumably interacts with the core protein CP39.
5

Charakterisierung der neuen centrosomalen Proteine CP148 und CP55 in Dictyostelium discoideum / Characterization of the new centrosomal proteins CP148 and CP55 in Dictyostelium discoideum

Kuhnert, Oliver January 2012 (has links)
Das im Cytosol liegende Dictyostelium Centrosom ist aus einer geschichteten Core-Region aufgebaut, die von einer Mikrotubuli-nukleierenden Corona umgeben ist. Zudem ist es über eine spezifische Verbindung eng an den Kern geknüpft und durch die Kernmembran hindurch mit den geclusterten Centromeren verbunden. Beim G2/M Übergang dissoziiert die Corona vom Centrosom und der Core verdoppelt sich so dass zwei Spindelpole entstehen. CP55 und CP148 wurden in einer Proteom-Analyse des Centrosoms identifiziert. CP148 ist ein neues coiled-coil Protein der centrosomalen Corona. Es zeigt eine zellzyklusabhängige An- und Abwesenheit am Centrosom, die mit der Dissoziation der Corona in der Prophase und ihrer Neubildung in der Telophase korreliert. Während der Telophase erschienen in GFP-CP148 exprimierenden Zellen viele, kleine GFP-CP148-Foci im Cytoplasma, die zum Teil miteinander fusionierten und zum Centrosom wanderten. Daraus resultierte eine hypertrophe Corona in Zellen mit starker GFP-CP148 Überexpression. Ein Knockdown von CP148 durch RNAi führte zu einem Verlust der Corona und einem ungeordneten Interphase Mikrotubuli-Cytoskelett. Die Bildung der mitotischen Spindel und der astralen Mikrotubuli blieb davon unbeeinflusst. Das bedeutet, dass die Mikrotubuli-Nukleationskomplexe während der Interphase und Mitose über verschiedene Wege mit dem Core assoziiert sind. Des Weiteren bewirkte der Knockdown eine Dispersion der Centromere sowie eine veränderte Sun1 Lokalisation in der Kernhülle. Somit spielt CP148 ebenso eine Rolle in der Centrosomen-Centromer-Verbindung. Zusammengefasst ist CP148 ein essentielles Protein für die Bildung und Organisation der Corona, welche wiederum für die Centrosom/Centromer Verbindung benötigt wird. CP55 wurde als Protein der Core-Region identifiziert und verbleibt während des Zellzyklus am Centrosom. Dort besitzt es strukturelle Aufgaben, da die Mehrheit der GFP-CP55 Moleküle in der Interphase keine Mobilität zeigten. Die GFP-CP55 Überexpression führte zur Bildung von überzähligen Centrosomen mit der üblichen Ausstattung an Markerproteinen der Corona und des Cores. CP55 Knockout-Zellen waren durch eine erhöhte Ploidie, eine weniger strukturierte und leicht vergrößerte Corona sowie zusätzliche cytosolische Mikrotubuli-organisierende Zentren charakterisiert. Letztere entstanden in der Telophase und enthielten nur Corona- aber keine Core-Proteine. In CP55 k/o Zellen erfolgte die Rekrutierung des Corona-Organisators CP148 an den Spindelpol bereits in der frühen Metaphase anstatt, wie üblich, erst in der Telophase. Außerdem zeigten die Knockout-Zellen Wachstumsdefekte, deren Grund vermutlich Schwierigkeiten bei der Centrosomenverdopplung in der Prophase durch das Fehlen von CP55 waren. Darüber hinaus konnten die Knockout-Zellen phagozytiertes Material nicht verwerten, obwohl der Vorgang der Phagozytose nicht beeinträchtigt war. Dieser Defekt kann dem im CP55 k/o auftretenden dispergierten Golgi-Apparat zugeschrieben werden. / The Dictyostelium centrosome consists of a layered core structure surrounded by a microtubule-nucleating corona. A tight linkage through the nuclear envelope connects the cytosolic centrosome with the clustered centromeres within the nuclear matrix. At G2/M the corona dissociates, and the core structure duplicates yielding two spindle poles. The two proteins CP148 and CP55 were discovered in a proteomic analysis of Dictyostelium centrosomes. CP148 is a novel coiled-coil protein of the centrosomal corona. GFP-CP148 exhibited cell cycle dependent presence and absence at the centrosome, which correlates with dissociation of the corona in prophase and its reformation in late telophase. During telophase, GFP-CP148 formed cytosolic foci, which coalesced and joined the centrosome. This explains the hypertrophic appearance of the corona upon strong overexpression of GFP-CP148. Depletion of CP148 by RNAi caused virtual loss of the corona and disorganization of interphase microtubules. Surprisingly, formation of the mitotic spindle and astral microtubules was unaffected. Thus, microtubule nucleation complexes associate with centrosomal core components through different means during interphase and mitosis. Furthermore, CP148 RNAi caused dispersal of centromeres and altered Sun1 distribution at the nuclear envelope, suggesting a role of CP148 in the linkage between centrosomes and centromeres. Taken together, CP148 is an essential factor for the formation of the centrosomal corona, which in turn is required for centrosome/centromere linkage. As CP148, CP55 was also identified in a centrosomal proteome analysis. It is a component of the centrosomal core structure, and persists at the centrosome throughout the entire cell cycle. FRAP experiments revealed the majority of centrosomal GFP-CP55 is immobile indicating a structural task of CP55 at the centrosome. GFP-CP55 overexpression elicits supernumerary centrosomes containing the usual set of corona and core marker proteins. The CP55 null mutant is characterized by increased ploidy, a less structured, slightly enlarged corona, and by supernumerary, cytosolic MTOCs, containing only corona proteins and lacking a core structure. Live cell imaging showed that supernumerary MTOCs arise in telophase. Lack of CP55 also caused premature recruitment of the corona organizer CP148 to mitotic spindle poles, already in metaphase instead of telophase. Forces transmitted through astral microtubules may expel prematurely acquired or loosely attached corona fragments into the cytosol, where they act as independent MTOCs. CP55null cells were also impaired in growth, most probably due to difficulties in centrosome splitting during prophase. Furthermore, although they were still capable of phagocytosis, they appeared unable to utilize phagocytosed nutrients. This inability may be attributed to their disorganized Golgi apparatus.
6

Regulation of Mitotic Spindle Assembly in Caenorhabditis elegans Embryos / Regulation der Bildung der mitotischen Spindel in Caenorhabditis elegans embryos

Schlaitz, Anne-Lore 10 June 2007 (has links) (PDF)
The mitotic spindle is a bipolar microtubule-based structure that mediates proper cell division by segregating the genetic material and by positioning the cytokinesis cleavage plane. Spindle assembly is a complex process, involving the modulation of microtubule dynamics, microtubule focusing at spindle poles and the formation of stable microtubule attachments to chromosomes. The cellular events leading to spindle formation are highly regulated, and mitotic kinases have been implicated in many aspects of this process. However, little is known about their counteracting phosphatases. A screen for genes required for early embryonic cell divisions in C. elegans identified rsa-1 (for regulator of spindle assembly 1), a putative Protein Phosphatase 2A (PP2A) regulatory subunit whose silencing causes defects in spindle formation. Upon rsa-1(RNAi), spindle poles collapse onto each other and microtubule amounts are strongly reduced. My thesis work demonstrates that RSA-1 indeed functions as a PP2A regulatory subunit. RSA-1 associates with the PP2A enzyme and recruits it to centrosomes. The centrosome binding of PP2A furthermore requires the new protein RSA-2 as well as the core centrosomal protein SPD-5 and is based on a hierarchical protein-protein interaction pathway. When PP2A is lacking at centrosomes after rsa-1(RNAi), the centrosomal amounts of two critical mitotic effectors, the microtubule destabilizer KLP-7 and the kinetochore microtubule stabilizer TPXL-1, are altered. KLP-7 is increased, which may account for the reduction of microtubule outgrowth from centrosomes in rsa-1(RNAi) embryos. TPXL-1 is lost from centrosomes, which may explain why spindle poles collapse in the absence of RSA-1. TPXL-1 physically associates with RSA-1 and RSA-2, suggesting that it is a direct target of PP2A. In summary, this work defines the role of a novel PP2A complex in mitotic spindle assembly and suggests a model for how different microtubule re-organization steps might be coordinated during spindle formation.
7

Regulation of Mitotic Spindle Assembly in Caenorhabditis elegans Embryos

Schlaitz, Anne-Lore 05 June 2007 (has links)
The mitotic spindle is a bipolar microtubule-based structure that mediates proper cell division by segregating the genetic material and by positioning the cytokinesis cleavage plane. Spindle assembly is a complex process, involving the modulation of microtubule dynamics, microtubule focusing at spindle poles and the formation of stable microtubule attachments to chromosomes. The cellular events leading to spindle formation are highly regulated, and mitotic kinases have been implicated in many aspects of this process. However, little is known about their counteracting phosphatases. A screen for genes required for early embryonic cell divisions in C. elegans identified rsa-1 (for regulator of spindle assembly 1), a putative Protein Phosphatase 2A (PP2A) regulatory subunit whose silencing causes defects in spindle formation. Upon rsa-1(RNAi), spindle poles collapse onto each other and microtubule amounts are strongly reduced. My thesis work demonstrates that RSA-1 indeed functions as a PP2A regulatory subunit. RSA-1 associates with the PP2A enzyme and recruits it to centrosomes. The centrosome binding of PP2A furthermore requires the new protein RSA-2 as well as the core centrosomal protein SPD-5 and is based on a hierarchical protein-protein interaction pathway. When PP2A is lacking at centrosomes after rsa-1(RNAi), the centrosomal amounts of two critical mitotic effectors, the microtubule destabilizer KLP-7 and the kinetochore microtubule stabilizer TPXL-1, are altered. KLP-7 is increased, which may account for the reduction of microtubule outgrowth from centrosomes in rsa-1(RNAi) embryos. TPXL-1 is lost from centrosomes, which may explain why spindle poles collapse in the absence of RSA-1. TPXL-1 physically associates with RSA-1 and RSA-2, suggesting that it is a direct target of PP2A. In summary, this work defines the role of a novel PP2A complex in mitotic spindle assembly and suggests a model for how different microtubule re-organization steps might be coordinated during spindle formation.

Page generated in 0.0583 seconds