• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 12
  • 1
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 13
  • 12
  • 12
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Estudo do desempenho do processo de microfiltração tangencial com membranas cerâmicas aplicado à retenção de bactérias e redução de sólidos suspensos de uma bebida à base de açaí / Performance study of the crossflow microfiltration process with ceramic membranes applied to the bacteria retention and suspended solids reduction of the beverage based on açai

Renata Natsumi Haneda 18 August 2010 (has links)
Nesta pesquisa de doutorado, o processo de microfiltração tangencial com membranas cerâmicas é investigado visando à retenção de bactérias (Escherichia coli CCT 0549) e redução de sólidos suspensos de uma bebida à base de açaí (Euterpe oleracea Mart.). As membranas comerciais selecionadas foram manufaturadas com \'alfa\'-alumina (\'AL IND.2\'O IND.3\') e possuem tamanho nominal de poro, fornecido pelo fabricante no valor de 0,8\'mü\'m e 1,2\'mü\'m. O valor nominal da membrana de 1,2\'mü\'m é maior que a largura da Escherichia coli (0,8\'mü\'m). Como, a princípio, o microrganismo está fisicamente sujeito a passagem pela membrana de 1,2\'mü\'m, esta estrutura micro-porosa foi submetida à impregnação de prata. Este procedimento visou verificar a influência da prata como material bactericida para auxiliar na redução/eliminação das bactérias inoculadas na bebida à base de açaí. Para tanto, a estrutura cerâmica micro-porosa foi tratada quimicamente com solução de citrato de prata e submetida à queima até a temperatura de 600 graus Celsius para eliminação dos compostos orgânicos e conseqüente impregnação de nanopartículas de prata metálica nos poros da membrana. Este processo de impregnação proporcionou um discreto aumento no índice de retenção microbiana em regime de escoamento turbulento (Re=20000). A caracterização morfológica, a composição e a impregnação de prata nas membranas foram realizadas com o auxílio da Microscopia Eletrônica de Varredura (MEV) e do Detector de Energia Dispersiva de Raio-X (EDX). Estas mesmas técnicas foram utilizadas para caracterizar o fenômeno físico-químico de formação da camada polarizada sobre a superfície da membrana. A análise da retenção de bactérias foi realizada através da contagem de unidades formadoras de colônia (UFC/mL) em placas Petrifilm \'EC POT.TM\'. O desempenho das membranas na retenção de material particulado suspenso foi analisado pela técnica de espectroscopia de ultra-som e por comparação qualitativa, entre concentrado e permeado, via microscopia ótica. A redução de antocianina (cianidina-3-glicosídeo) e o conteúdo de polifenóis totais foram investigados via espectrofotometria, apresentando relação direta com o tamanho dos poros da membrana e com o regime de escoamento. Desta forma, parâmetros fluido-dinâmicos do processo, tais como: número de Reynolds, pressão transmembrana e fluxo transmembrana foram caracterizados para uma ampla faixa do escoamento turbulento e analisados com o modelo de resistência em série. Os resultados experimentais obtidos neste trabalho indicaram que o processo de microfiltração tangencial é uma boa alternativa à retenção de microrganismos e simultânea redução de sólidos suspensos da bebida à base de açaí. / In this doctoral research, the crossflow microfiltration process utilizing ceramic membranes was investigated aiming at the bacteria retention (Escherichia coli) and reduction of suspended solids of beverage based on açai (Euterpe oleracea Mart.). The selected commercial membranes of \'alfa\'-alumina (\'AL IND.2\'O IND.3\') had nominal pore sizes of 0.8 and 1.2 \'mü\'m and were manufactured by Andritz Group from Austria. The membrane nominal value of 1.2\'mü\'m is larger than the width of the Escherichia coli (0.8\'mü\'m). Therefore, as the microrganisms are subjected to pass through the pores of this membrane, it was submitted to silver impregnation. This procedure aimed to verify the silver influence as a bactericide material to assist in retention or elimination of bacteria during the microfiltration process. In this way, the microporous structure was chemically treated with a silver citrate solution and then, subjected to burning until 600 Celsius degrees to eliminate organic compounds and consequent impregnation of nanoparticles of metallic silver in the membrane pores. The morphology characterization, composition, and impregnation of silver in membranes were analyzed by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray fluorescence (EDX) spectrometer. The same techniques were utilized to characterize the physicochemical phenomenon of polarization layer formation on the membrane surface. The analysis of bacteria retention was performed by the counting of colony forming units (CFU/mL) in Petrifilm Plates \'EC POT.TM\'. The performance of the membranes in the retention of solids in suspension was analyzed by Ultrasound Spectroscopy - APS100 and Optical Microscopy. The variations of the anthocyanin concentration and the total polyphenol content were investigated by spectrophotometry, showing direct relationship with the membrane pore size and flow regime. Therefore, fluid-dynamical parameters, such as Reynolds number, transmembrane pressure, and permeate flux were characterized for a large range of turbulent flow and analyzed with the resistance-in-series model. The experimental results of this research indicated that the microfiltration process is a suitable alternative to retain microrganisms and simultaneously decrease suspended solids of the beverage based on açai.
22

Estudo do declínio do fluxo transmembrana via microfiltração tangencial de misturas bifásicas de óleos vegetais e água / Study of the transmembrane flux decline in processing via microfiltration of biphasic mixtures of water and vegetable oils

Karime Bárbara Santo Caminoto 11 January 2013 (has links)
O fluido multifásico complexo (suco de açaí) tem uma forte interação com membranas poliméricas ou cerâmicas de microfiltração e a formação de incrustação depende da composição e das condições de dinâmica de fluidos. Neste estudo experimental foi investigada a influência dos dois principais ácidos graxos presentes no açaí, ácido oleico e ácido palmítico, em misturas com água e no processo de microfiltração tangencial com membranas cerâmicas de alumina com um tamanho de poro nominal de 0,2 \'mü\'m. Mediu-se o fluxo de permeado em função do tempo, nas pressões transmembranas de 300 kPa, 400 kPa e 500 kPa. Para o fluxo da corrente de alimentação foram encontrados valores de Reynolds numa faixa de 9500 a 31000. Cada amostra de misturas de água/ácido oleico, água/ácido palmítico e água/ácidos oleico e palmítico, foi estudada em três séries de ensaios realizados durante 180 minutos e 72 minutos para a mistura água/ácido palmítico, a temperatura em 25 ºC. Analisou-se as incrustações resultantes e as fortes interações fluido/membrana utilizando o modelo de resistência em série e imagens tomadas por microscopia eletrônica de varredura (MEV). Os melhores resultados de permeado encontrados para a mistura de água/ácido oleico foram para Re = 33000, no entanto, resultados satisfatórios foram encontrados para Re = 20000. Agora para a água/ácido palmítico foram encontrados para Re = 20000. Os melhores resultados de permeado para a mistura água/ácidos oleico e palmítico foram para Re = 31000. De acordo com os resultados das resistências, a mistura água/ácido causa um bloqueio dos poros da membrana, resultando em uma maior diminuição do fluxo transmembrana. A limpeza foi eficiente para reduzir a resistência associada com a polarização. / The complex fluid multiphase (açaí juice) has a strong interaction with polymeric or ceramic membranes for microfiltration fouling and its formation depends on the fluid composition and fluid dynamics conditions. In this experimental study was investigated the influence of two major fatty acids present in açaí, oleic acid and palmitic acid in mixtures with water and in the process of crossflow microfiltration with ceramic membranes. In the separation process is used alumina ceramic membrane with a nominal pore size of 0.2 micrometers. The permeate flux was measured in function of time using the 300 kPa, 400 kPa and 500 kPa for the transmembrane pressure. The flow of feed stream and its respective value of Reynolds were in range of: 8900-3300. For each sample of mixtures oleic acid/water and palmitic acid/water and palmitic acid, oleic acid/ water, three series of experiments were conducted for 180 minutes and 72 minutes for mixture palmitic acid/water at temperature in 25 Celcius. For analyze of fouling resulting from strong interactions fluid/membrane was used the model of resistance in series and images taken via scanning electron microscopy (SEM). The best results for mixing oleic acid/water were to Re = 33000, however, satisfactory results were found for Re = 20000. Now for the palmitic acid/water were found to Re = 20000. For mixture palmitic acid, oleic acid/ water were found to Re = 31000. According to the results of the resistances, the mixture oleic acid/water cause a blockage of the pores of the membrane resulting in a greater decrease of the transmembrane flow. The cleaning is efficient for reducing the resistance associated with the polarization.
23

Fouling characteristics of ceramic microfiltration and ultrafiltration membranes during surface water treatment

Lee, SeungJin 20 September 2013 (has links)
Ceramic membrane processes are a rapidly emerging technology for water treatment, yet virtually no information on the performance and fouling mechanisms is available to the industry. Ceramic microfiltration of model feed solutions and a synthetic river water was examined, and a systematic comparison with polymeric counterpart was performed. The results suggested that the models which have been applied to polymeric membranes agreed well with the ceramic membrane filtration data. The fouling was characterized by the initial pore blocking mechanism and transition to the cake filtration mechanism at a later phase. Cake resistance was dominant and readily removable by physical cleaning. The effects of solution chemistry including ionic strength, divalent ion concentration and pH on the flux behavior were comparatively evaluated for ceramic and polymeric ultrafiltration of synthetic water containing model natural organic matter. Experimental evaluations further included resistance-in-series model analysis, organic matter fouling visualization using quantum dots, batch adsorption test, and contact angle measurement, and provided a quantitative a quantitative comparison of fouling characteristics between ceramic and polymeric membranes. The results collectively suggested that the effects of solution chemistry on the fouling behavior with ceramic membranes were mostly similar with polymeric membranes in terms of trends, while the extents varied depending on water quality parameters. Less fouling tendency and better cleaning efficiency were observed with the ceramic membranes, which was a promising finding for ceramic membrane application to surface water treatment. The study further examined a coagulation-ceramic membrane process as a robust option for surface water treatment. The performance of the hybrid system was evaluated using selected surface waters by varying coagulation conditions and types of coagulants. Results suggested that ceramic membranes experienced relatively less fouling and had better cleaning efficiency than polymeric counterpart. The results of this study provide critical information to guide the industry practitioners, consultants, and regulatory agents considering early adoption of this new technology as well as fundamental knowledge upon which further in-depth studies can be built.
24

Effect of elevated temperature on ceramic ultrafiltration of colloidal suspensions

Cromey, Tyler 22 May 2014 (has links)
The inherent thermal resistance of ceramic membranes allows for treatment of industrial waters at elevated temperatures. Traditionally, the high temperature of wastewater has been an issue compromising the integrity of polymeric membrane systems or requiring the temperature to be lowered for further treatments. In ceramic membrane systems, a decrease in viscosity with increasing temperature, however, can be utilized, which increases the permeate flux. In this study, the fouling of ceramic ultrafiltration by feed solutions containing colloidal silica was evaluated at temperatures between 25 – 90 °C seen in various industries. Ceramic membranes were able to perform well at elevated temperatures up to 90 ºC with sustained mechanical and chemical integrity. Results showed net benefit of filtration at elevated temperatures on permeate flux in spite of increasing total fouling resistance with temperature. When the temperature increased from 25 to 90 °C, there was a 90% increase in steady-state permeate flux. The dominant resistance was physically removable fouling, and the increase in fouling with feed temperature was supported by force balance analyses. This study provides a foundation from which further studies can be developed including pilot-scale testing, use of real wastewater, and the effects of operating conditions.
25

Avaliação de um sistema híbrido de tratamento de águas: membrana cerâmica de microfiltração com resina trocadora iônica. / Evaluation of a hybrid water treatment system: ceramic microfiltration membrane with ion exchange resin.

PESSOA, Julyanna Damasceno. 23 March 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-03-23T20:01:22Z No. of bitstreams: 1 JULYANNA DAMASCENO PESSOA - DISSERTAÇÃO PPGEQ 2015..pdf: 3056060 bytes, checksum: f1c90789fd3af9574cb10fbc1d69a075 (MD5) / Made available in DSpace on 2018-03-23T20:01:22Z (GMT). No. of bitstreams: 1 JULYANNA DAMASCENO PESSOA - DISSERTAÇÃO PPGEQ 2015..pdf: 3056060 bytes, checksum: f1c90789fd3af9574cb10fbc1d69a075 (MD5) Previous issue date: 2014-12-15 / Em decorrência da degradação dos recursos hídricos e da crescente preocupação com microrganismos específicos na água, a utilização de membranas cerâmicas para separação de materiais contaminantes, passa a ser uma opção de tratamento para a produção de água potável, devido a motivos como, por exemplo, sua resistência ao ataque de produtos químicos, requerer uma menor área de construção do equipamento, maior economia de energia, dentre outros. O presente trabalho objetivou estudar o desempenho de um sistema híbrido, composto por membrana cerâmica tubular de microfiltração, recheadas por resinas trocadoras iônicas, para tratamento de água de qualidade inferior. As membranas utilizadas nesse trabalho são do tipo α-alumina (α-Al2O3), tamanho nominal de poro de aproximadamente 0,8 µm, produzidas pelo Laboratório de Membranas Cerâmicas (LABCEM) do Laboratório de Referência em Dessalinização (LABDES) na Universidade Federal de Campina Grande (UFCG). O sistema foi avaliado em função do fluxo e vazão do permeado, nas pressões de operação 0,5; 1,0; 2,0 e 3,0 bar; teste de presença / ausência e contagem bacteriológicas na água da alimentação e permeado para o sistema: membrana cerâmica; análises físicoquímicas realizadas para o sistema: membrana cerâmica/ RTI; e tempo de residência hidráulica ( ), nas pressões de operação 1,0; 2,0 e 3,0 bar. A membrana cerâmica removeu completamente os Coliformes totais e fecais (Escherichia coli) da água. O comportamento do fluxo do permeado variou com a pressão de operação. No sistema híbrido: membrana cerâmica/ RTI, o tempo de residência foi de 15,55 segundos na pressão de operação 1,0 bar, removendo 71,9% dos íons da água de alimentação, para 66% na pressão 2,0 bar ( =11,73 segundos) e 61% na de 3,0 bar ( = 10,11 segundos). O sistema híbrido mostrou-se eficiente na remoção dos parâmetros físico-químicos e produziu água tratada de boa qualidade quanto aos parâmetros bacteriológicos nas águas de qualidade inferior, com baixo consumo energético. / Due to the degradation of water resources and the increasing concern about specific microorganisms in water, the use of ceramic membranes for separation of contaminating materials, becomes a treatment option for the production of drinking water, due to reasons such as its resistance to chemicals, requires a smaller area of equipment construction, greater energy savings, among others. This study investigated the performance of a hybrid system consisting of a tubular microfiltration ceramic membrane, filled with ion exchange resins for substandard water treatment. The membranes used in this work are the α-alumina type (α-Al2O3), with pores which have a nominal diameter of about 0.8 microns produced by Laboratório de Membranas Cerâmicas (LABCEM), at Desalination in Reference Laboratory (LABDES) at the Federal University of Campina Grande (UFCG). The system was evaluated by the flow and permeate flow, the operating pressure 0.5; 1.0; 2.0 and 3.0 bar; presence / absence and bacteriological count tests in the feed and permeate water for the system: ceramic membrane; Physical and chemical analysis for the system: ceramic membrane / RTI; and hydraulic residence time (τ), at the operating pressures of 1.0; 2.0 and 3.0 bar. The ceramic membrane completely removed the Total and fecal (Escherichia coli) Coliform of the water. The permeate flux behavior varied with the operating pressure. In the hybrid system: ceramic membrane / RTI residence time was 15.55 seconds at the operating pressure of 1.0 bar by removing 71.9% of the feed water ions, to 66% at 2.0 bar pressure ( = 11.73 seconds), and 61% for the 3.0 bar ( = 10.11 seconds). The hybrid system was efficient in the removal of physical and chemical parameters and produced good quality treated water as for the bacteriological parameters in lower quality water with low power consumption.
26

Development of Combination Processes Consisting of Ozonation, Coagulation and Ceramic Membrane Filtration for Water Reclamation based on Evaluation of Risk and Energy / リスクおよびエネルギー評価に基づくオゾン、凝集、セラミック膜ろ過による複合水再生処理プロセスの開発に関する研究

Wang, Hong Yang 25 March 2013 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第17538号 / 工博第3697号 / 新制||工||1563(附属図書館) / 30304 / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 田中 宏明, 教授 清水 芳久, 教授 伊藤 禎彦 / 学位規則第4条第1項該当
27

Rejection and critical flux of calcium sulphate in a ceramic titanium dioxide nanofiltration membrane

Ahmed, Amer Naji January 2013 (has links)
This thesis describes the rejection efficiency and the fouling behaviour of calcium sulphate solutes in a 1 nm tubular ceramic titanium dioxide nanofiltration membrane. Calcium sulphate is considered as one of the greatest scaling potential inorganic salts that responsible for membrane fouling which represents a main challenge in the expansion of membrane processes for desalination of brackish and saline water. The surface charge type and magnitude for the composite amphoteric TiO_2 membrane were characterised using streaming potential measurements. Electrokinetic membrane experiments were conducted in a background electrolyte comprising 0.01 M (NaCl). The zeta potential was estimated from the measured streaming potential using the Helmoholtz-Smoluchowski equation and the surface charge density was subsequently calculated using the Gouy-Chapman and Graham equations. The experimental results showed that the membrane was negatively charged at neutral pH and its iso-electrical point (i.e.p) was at pH of 4.0. The rejection behaviour of calcium sulphate at three different initial concentrations (0.001, 0.005 and 0.01 M) were investigated compared to other naturally occurring minerals (NaCl, Na_2 SO_4, CaCl_2) in single salt solutions. The rejection experiments were conducted at five different applied trans-membrane pressures ranged from 1.0 to 5.0 bars. Salt retention measurements showed that the rejection sequence was R (CaSO_4) > R (Na_2 SO_4) > R (CaCl_2) > R (NaCl). This rejection sequence behaviour showed an inverse relationship with the diffusion coefficients of the four salts. The salt with the lowest diffusion coefficient (CaSO_4) showed the highest rejection (43.3%), whereas that with the highest diffusion coefficient showed the lowest rejection. The rejection of calcium sulphate solution at saturation concentration was also conducted after a suspension solution of 0.015 M (CaSO_4) was prepared and filtered. The ionic analysis for calcium sulphate permeates indicated that, for the negatively charged TiO_2 membrane, the rejection for bivalent anion (SO_4^(2-) ) was higher than that of the bivalent cation (Ca^(2+) ).The critical flux (CF) experiments were carried out at six trans-membrane pressure ranged from 1.0 to 6.0 bars to identify the form and the onset of calcium sulphate fouling (as gypsum) using different concentrations below saturation concentration (0.001, 0.005, 0.01 M) and at saturation concentration. Two different flux-pressure techniques have been applied and compared to determine the critical flux values; these are: step by step technique and standard stepping technique. The obtained critical flux results from both measuring techniques (for all the four sessions) confirmed that the critical flux was reached and exceeded. The present work indicated that the resulting critical flux values from both measuring procedures were decreased as the ionic strengths of the calcium sulphate solutes were increased. A mathematical model has been proposed to identify the key parameters that affect the transport performance inside the TiO_2 nanofiltration membrane. The original Donnan steric pore model (DSPM) was used to simulate the rejection of 0.01 M sodium chloride as a reference solution. The membrane effective pore radius was estimated using two different transport models, both of these models depend on the permeation test of uncharged solute (glucose). The Donnan potential was determined based on the membrane effective fixed charge density which was determined by supposing that the membrane surface charge was uniformly distributed in the void volume of cylindrical pores. The theoretical rejection of NaCl solute for the present DSPM model was found to be in agreement with the experimental data.
28

Développement de membranes céramiques à architecture optimisée pour l'oxycombustion / Development of ceramic membrane with optimised design for oxycombustion process

Reichmann, Mickaël 05 December 2014 (has links)
L’étude de matériaux conducteur mixtes (ionique et électronique) connait un intérêt croissant depuis plusieurs années dans le domaine de l’énergie, principalement lié au développement des électrodes pour les piles à combustible de type SOFC (Solid Oxide Fuel Cell) ou des réacteurs catalytiques membranaires (CMR) pour le réformage du méthane de synthèse ou pour le procédé d’oxycombustion. Dans ce dernier cas, la réalisation de membranes conductrices mixtes de structure pérovskite du type La1-xAxFe1-yByO3- permet la séparation de l’oxygène de l’air à haute température (900°C) avec une sélectivité quasiment infinie sans circuit électrique extérieur. Les mécanismes limitant le transport de l’oxygène à travers la membrane ont été étudiés à l’aide d’un dispositif de caractérisation original composé d’électrodes, permettant la mesure du potentiel électrochimique de l’oxygène à la surface de la membrane. L’influence de la substitution du cation en site A puis en site B sur les propriétés de semi-perméabilité à l’oxygène a été étudiée au sein des matériaux pérovskites La0,5A0,5Fe0,7B0,3O3-(A = Ca, Sr, Ba et B = Al, Co, Cu, Ga, Mg, Mn, Ni, Sn, Ti, Zn). Les résultats obtenus avec cette technique originale nous ont permis de mieux cerner les mécanismes limitant le transport d’oxygène à travers la membrane. L’influence de la microstructure de la membrane sur les propriétés de semi-perméabilité à l’oxygène a également été étudiée et un modèle d’évolution des propriétés de semi-perméabilité en fonction de la microstructure a été proposé. Cette compréhension des mécanismes de transport nous a permis d’orienter les recherches vers l’élaboration de nouvelles architectures de membranes. / Since few years, the study of mixed conducting materials (ionic and electronic) knows an increasing interest in the energy area, especially with the development of electrodes for Solid Oxide Fuel Cell (SOFC) or Catalytic Membrane Reactors (CMR) for the methane reforming in synthesis gas or for oxyfuel process. In this latter case, the mixed conductor membrane with La1-xAxFe1-yByO3- perovskite structure allows the separation of oxygen from air at high temperature (900°C) with a quasi-infinite selectivity without outside electric circuit, with an interesting economical cost. The oxygen transport mechanisms through the membrane are studied thanks to an original electrodes system composed of a zirconia point micro-electrode and a metallic reference electrode. This system allows the measurement of the oxygen electrochemical potential at the membrane surface. The influence of cation substitution in A-site then B-site in La0.5A0.5Fe0.7B0.3O3-(A = Ca, Sr, Ba and B = Al, Co, Cu, Ga, Mg, Mn, Ni, Sn, Ti, Zn) perovskite materials has been studied. The results obtained by this original system led us to a better understanding and a identification of the rate determining step of oxygen transport mechanism through the membrane. The influence of the microstructure on oxygen semi-permeation has been studied and an evolution model of semi-permeation properties with microstructure has been shown. The understanding of oxygen transport mechanisms led to the development and the elaboration of news architectures of membranes.
29

Étude du couplage oxydant du méthane : approche combinée de la formulation des catalyseurs, de la cinétique de la réaction et de l'ingénierie des réacteurs / Investigation of the oxidative coupling of methane : combined approach of catalysts formulation, kinetics and engineering aspects

Olivier, Louis 02 April 2010 (has links)
Le couplage oxydant du méthane (OCM) est une réaction complexe de catalyse hétérogène, permettant la conversion directe du méthane en éthylène, pour un coût énergétique moindre par rapport aux procédés industriels indirects actuels. L’OCM nécessite une température supérieure à 700°C, à pression atmosphérique. Il y a donc compétition avec l’oxydation totale. Dans les nombreuses études rapportées dans la littérature, la limite de 25 % de rendement en C2 (éthane + éthylène) n’a pas été franchie. Les mécanismes proposés ne sont pas applicables à tous les catalyseurs actifs ou valables pour un large domaine de conditions opératoires. Une nouvelle manière d’aborder cette réaction est de prendre en compte la plus large diversité possible des paramètres intervenant dans ce procédé, de la formulation aux réacteurs en vue d'optimiser les performances. La présente étude a permis d’extraire des descripteurs pertinents du processus de l’OCM à partir de données expérimentales et d’établir certaines corrélations entre descripteurs et performances. Des catalyseurs LaSrCaO ont été sélectionnés après tests à haut débit en réacteur parallèle à lit fixe et un modèle micro-cinétique de l’OCM dans ce réacteur a été validé grâce aux données obtenues. D’autres expériences ont été menées avec succès en réacteur à membrane dense pour améliorer la productivité en éthylène. Le rôle joué par la composition de surface des catalyseurs a été identifié et une analyse critique de la méthode générale mise en œuvre conclut ce travail / The oxidative coupling of methane (OCM) is a complex heterogeneous catalytic reaction allowing the direct conversion of methane to ethylene, at a lower energetic cost than the current industrial processes. OCM requires a temperature higher than 700°C at atmospheric pressure. Hence, there is competition with total oxidation. In the numerous studies reported in literature, the limit of 25% C2 (ethane + ethylene) yield could not be overtaken. Proposed mechanisms are not relevant for all active materials or on all operating condition ranges. A new way to approach the reaction would be to take into account the wider possible panel of parameters involved in this process, from formulation to reactors targeting at process optimisation. The present study permitted to extract relevant descriptors of OCM process from experimental data and establish relationships between descriptors and performances. LaSrCaO catalysts were selected and tested in a parallel fixed-bed reactor and the data obtained were used to validate a micro-kinetic model in this reactor. Experiments were also performed successfully in a dense membrane reactor to improve ethylene productivity. The role played catalyst surface composition was also identified and a critical analysis of the global method implemented concludes this work
30

A Preliminary Study On Construction Of A High Capacity Tensiometer And Its Use In Measurement Of Matric Suction In Unsaturated Soils

Koksalan, Ali Okan 01 February 2013 (has links) (PDF)
Soil suction is one of the main state parameters that governs unsaturated soil behaviour. Tensiometers are the only type of probe that can measure soil suction directly, but only up to 90 kPa. In the past two decades, a new type of tensiometer with much greater measurement range (up to 2 MPa) has appeared in the literature. The measurement range (i.e. capacity) of a tensiometer is limited by (i) how well it is saturated, and (ii) the air entry value of its porous interface. In this study, the first high capacity tensiometer of Turkey was designed and built. For the purpose of increasing the measurement capacity of the tensiometers, a novel saturation setup that uses a hydraulic pressurization system with capacity of 10 MPa was designed and built. A vacuum-and-pressure saturation procedure was developed. To calibrate the 10 MPa pressure transducers that form the core of the tensiometers, a high-pressure calibration setup capable of pressurizing up to 11 MPa was designed and built. By varying designs of tensiometer bodies, porous interfaces and seals, ways of increasing the suction capacity are investigated. Over a dozen tensiometer design variations are developed, and tried by exposing to atmospheric evaporation. A maximum suction measurement of 870 kPa was achieved with a conventional design / however, none of the new designs were successful. 3 successful designs were also briefly tried on soil samples

Page generated in 0.0881 seconds