• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 9
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulação de cenários agrícolas futuros para a cultura do milho no Brasil com base em projeções de mudanças climáticas / Simulation of future agricultural scenarios for maize crop based on projections of climate change

Souza, Tamires Teles de 02 February 2018 (has links)
O milho (Zea mays) é considerado como uma das culturas mais importantes cultivadas mundialmente devido a sua composição química, valor nutritivo e o seu potencial produtivo, apresentando assim, considerável relevância nos aspectos socioeconômicos. Diversos fatores interferem no desempenho da cultura e, dentre eles, o clima está entre aqueles que oferecem os maiores desafios para planejamento e manejo da cultura. Diante da importância da cultura no contexto nacional e mundial, é importante considerar as projeções futuras da produção do grão diante das mudanças climáticas e, consequentemente, na segurança alimentar nos próximos anos. Assim, avaliou-se neste estudo o impacto da mudança do clima sobre o crescimento e desenvolvimento da cultura do milho, utilizando um modelo de crescimento de plantas, baseado em processos biofísicos. Para a calibração do modelo foram utilizados dados obtidos experimentalmente e a simulação de cenários de mudanças climáticas foi realizada de acordo com a abordagem do programa AgMIP. Trabalhou-se com o modelo CERES-MAIZE/DSSAT, e três modelos de circulação climática global (GCM\'s) regionalizados e dois cenários econômicos (ou de emissão) para o período 2040-2069 (representando 2050). Com base nos resultados obtidos, pode-se concluir que se as práticas de gestão se mantêm como presentes, o rendimento de milho deverá diminuir em meio do século, no entanto, a diminuição dos rendimentos reais pode não ser tão dramática quanto previsto nos casos em que apenas o fator climático é considerado. Para isso fatores econômicos e tecnológicos devem ser considerados para aumentar os rendimentos. O aumento da [CO2] terá um efeito positivo sobre o crescimento do cultivo, mas não parece ser suficiente para compensar os efeitos negativos do clima futuro, notadamente o aumento da temperatura do ar. / Maize (Zea mays) is considered one of the most important crops cultivated worldwide due to its chemical composition, nutritional value and its productive potential, thus presenting considerable relevance in socioeconomic aspects. Several factors interfere in the performance of the crop and, among them, the climate is among those that offer the greatest challenges for crop planning and management. Given the importance of culture in the national and global context, it is important to consider the future projections of grain production in the face of climate change and, consequently, food security in the coming years. Thus, the impact of climate change on maize crop growth and development was evaluated in this study using a plant growth model based on biophysical processes. For the calibration of the model, data obtained experimentally were used and the simulation of climate change scenarios was performed according to the AgMIP program approach. We worked with the CERES-MAIZE / DSSAT model, and three regional climate circulation models (GCM\'s) and two economic (or emission) scenarios for the period 2040-2069 (representing 2050). Based on the results obtained, it can be concluded that if management practices remain as present, corn yields should decrease in the middle of the century, however, the decrease in real incomes may not be as dramatic as predicted in cases where that only the climatic factor is considered. For this economic and technological factors must be considered to increase incomes. The increase in [CO2] will have a positive effect on crop growth, but it does not appear to be sufficient to compensate for the negative effects of future climate, notably the increase in air temperature.
2

Simulação de cenários agrícolas futuros para a cultura do milho no Brasil com base em projeções de mudanças climáticas / Simulation of future agricultural scenarios for maize crop based on projections of climate change

Tamires Teles de Souza 02 February 2018 (has links)
O milho (Zea mays) é considerado como uma das culturas mais importantes cultivadas mundialmente devido a sua composição química, valor nutritivo e o seu potencial produtivo, apresentando assim, considerável relevância nos aspectos socioeconômicos. Diversos fatores interferem no desempenho da cultura e, dentre eles, o clima está entre aqueles que oferecem os maiores desafios para planejamento e manejo da cultura. Diante da importância da cultura no contexto nacional e mundial, é importante considerar as projeções futuras da produção do grão diante das mudanças climáticas e, consequentemente, na segurança alimentar nos próximos anos. Assim, avaliou-se neste estudo o impacto da mudança do clima sobre o crescimento e desenvolvimento da cultura do milho, utilizando um modelo de crescimento de plantas, baseado em processos biofísicos. Para a calibração do modelo foram utilizados dados obtidos experimentalmente e a simulação de cenários de mudanças climáticas foi realizada de acordo com a abordagem do programa AgMIP. Trabalhou-se com o modelo CERES-MAIZE/DSSAT, e três modelos de circulação climática global (GCM\'s) regionalizados e dois cenários econômicos (ou de emissão) para o período 2040-2069 (representando 2050). Com base nos resultados obtidos, pode-se concluir que se as práticas de gestão se mantêm como presentes, o rendimento de milho deverá diminuir em meio do século, no entanto, a diminuição dos rendimentos reais pode não ser tão dramática quanto previsto nos casos em que apenas o fator climático é considerado. Para isso fatores econômicos e tecnológicos devem ser considerados para aumentar os rendimentos. O aumento da [CO2] terá um efeito positivo sobre o crescimento do cultivo, mas não parece ser suficiente para compensar os efeitos negativos do clima futuro, notadamente o aumento da temperatura do ar. / Maize (Zea mays) is considered one of the most important crops cultivated worldwide due to its chemical composition, nutritional value and its productive potential, thus presenting considerable relevance in socioeconomic aspects. Several factors interfere in the performance of the crop and, among them, the climate is among those that offer the greatest challenges for crop planning and management. Given the importance of culture in the national and global context, it is important to consider the future projections of grain production in the face of climate change and, consequently, food security in the coming years. Thus, the impact of climate change on maize crop growth and development was evaluated in this study using a plant growth model based on biophysical processes. For the calibration of the model, data obtained experimentally were used and the simulation of climate change scenarios was performed according to the AgMIP program approach. We worked with the CERES-MAIZE / DSSAT model, and three regional climate circulation models (GCM\'s) and two economic (or emission) scenarios for the period 2040-2069 (representing 2050). Based on the results obtained, it can be concluded that if management practices remain as present, corn yields should decrease in the middle of the century, however, the decrease in real incomes may not be as dramatic as predicted in cases where that only the climatic factor is considered. For this economic and technological factors must be considered to increase incomes. The increase in [CO2] will have a positive effect on crop growth, but it does not appear to be sufficient to compensate for the negative effects of future climate, notably the increase in air temperature.
3

Public interest concerning elementary school information in Ceres, California

Stanford, Joseph Benton, Jr. 01 January 1956 (has links)
The emphasis of this study will be centered in the search for answers to the following questions: (1) How accurately and extensively do adults of the community know their elementary schools?; (2) What are the various sources by which adults of the community receive school information?; (3) What types (categories) of school information for citizens desire most?; (4) What types of school news items appear most frequently in the local newspaper, and how accurate and effective in it? The objective in conducting this study is to gain an insight into the matter of communication between the elementary school and the community and to evaluate local school publicity.
4

Parametrization, Validation and Utilization of the Crop Growth :Ceres-Maize Model /

Šťastná, Milada January 1998 (has links)
No description available.
5

Bayesian experimental design and its application to engine research and development

Mowll, Deborah January 1997 (has links)
No description available.
6

The vanishing cryovolcanoes of Ceres

Sori, Michael M., Byrne, Shane, Bland, Michael T., Bramson, Ali M., Ermakov, Anton I., Hamilton, Christopher W., Otto, Katharina A., Ruesch, Ottaviano, Russell, Christopher T. 16 February 2017 (has links)
Ahuna Mons is a 4 km tall mountain on Ceres interpreted as a geologically young cryovolcanic dome. Other possible cryovolcanic features are more ambiguous, implying that cryovolcanism is only a recent phenomenon or that other cryovolcanic structures have been modified beyond easy identification. We test the hypothesis that Cerean cryovolcanic domes viscously relax, precluding ancient domes from recognition. We use numerical models to predict flow velocities of Ahuna Mons to be 10-500 m/Myr, depending upon assumptions about ice content, rheology, grain size, and thermal parameters. Slower flow rates in this range are sufficiently fast to induce extensive relaxation of cryovolcanic structures over 10(8)-10(9) years, but gradual enough for Ahuna Mons to remain identifiable today. Positive topographic features, including a tholus underlying Ahuna Mons, may represent relaxed cryovolcanic structures. A composition for Ahuna Mons of >40% ice explains the observed distribution of cryovolcanic structures because viscous relaxation renders old cryovolcanoes unrecognizable.
7

n’Vergelykende studie t.o.v. dieaktiwiteite van stedelikeen Plattelandse swart amateur gemeenskapsteatergroepe in die apartheids era.

January, Cornelius January 1997 (has links)
Magister Artium - MA / In studies oor die swart Afrikaanse amateur gemeenskapsteater is voorheen beweer dat die platteland geen oorspronklike en noemenswaardige bydra gelewer het nie. Hiedie studie rig hom op aktiwiteite van hierdie aard in die Wolseley/CereslW oreester-area en bewys dié soort aannames verkeerd. Die swart Afrikaanse gemeenskapsteater van die area word hier beskryf gedokumenteer, maar terselfdertyd ook vergelyk met dit wat op dieselfde terrein in die stedelike gebiede van die Skiereiland plaasgevind het. Laasgenoemde was in die apartheidsjare meer dikwels openlik deel van die bevrydingstryd. Dit teenoor die meer sisteembevestigende aktiwiteite op die platteland. Oorsake hiervoor was onder meer die greep van die kerk op sy lidmate asook ook pogings om die gemeenskap van Ceres en omstreke op te beur ná die vernietigend aardbewing van 1969. Ook die verliese ná gedwonge verskuiwing ingevolge die Groepsgebiedewet is deur dié soort vermaak besweer. Hierteenoor het die middel jare tagtig 'n nuwe, militante generasie leerders op die verhoog gebring. Uit hulle het die streek se eerste anti-hegemoniese dramagroep voortgekom. Hulle het gesorg vir hulle eie treffende sisteem- kritiese drama. Hulle het ook grootliks bygedra om die gemeenskappe in die Boland en Karoo politiek bewus te maak. Die studie wil hierdie gemarginaliseerde teatergebeure aan die vergetelheid ontruk en so 'n bydra lewer tot 'n ewewigtiger Suid-Afrikaanse kultuurgeskiedenis. / South Africa
8

An Application of N-Body Simulation to the Rotational Motion of Solar System Bodies

Wu, Tiandan 12 August 2008 (has links)
No description available.
9

Next-Generation Earth Radiation Budget Instrument Concepts

Coffey, Katherine Leigh 11 May 1998 (has links)
The current effort addresses two issues important to the research conducted by the Thermal Radiation Group at Virginia Tech. The first research topic involves the development of a method which can properly model the diffraction of radiation as it enters an instrument aperture. The second topic involves the study of a potential next-generation space-borne radiometric instrument concept. Presented are multiple modeling efforts to describe the diffraction of monochromatic radiant energy passing through an aperture for use in the Monte-Carlo ray-trace environment. Described in detail is a deterministic model based upon Heisenberg's uncertainty principle and the particle theory of light. This method is applicable to either Fraunhofer or Fresnel diffraction situations, but is incapable of predicting the secondary fringes in a diffraction pattern. Also presented is a second diffraction model, based on the Huygens-Fresnel principle with a correcting obliquity factor. This model is useful for predicting Fraunhofer diffraction, and can predict the secondary fringes because it keeps track of phase. NASA is planning for the next-generation of instruments to follow CERES (Clouds and the Earth's Radiant Energy System), an instrument which measures components of the Earth's radiant energy budget in three spectral bands. A potential next-generation concept involves modification of the current CERES instrument to measure in a larger number of wavelength bands. This increased spectral partitioning would be achieved by the addition of filters and detectors to the current CERES geometry. The capacity of the CERES telescope to serve for this purpose is addressed in this thesis. / Master of Science
10

A New Paradigm for End-to-End Modeling of Radiometric Instrumentation Systems

Ashraf, Anum Rauf Barki 14 April 2020 (has links)
Earth observing instruments, such as those embarked on the Earth Radiation Budget Experiment (ERBE) and Clouds and the Earth's Radiant Energy System (CERES), have been used to monitor the arriving solar and the upwelling solar reflected and longwave emitted radiation from low Earth orbit for the past three decades. These instruments have played a crucial role in studying the Earth's radiation budget and developing a decadal climate data record. Prior to launch, these instruments go through several robust design phases followed by rigorous ground calibration campaigns to establish their baseline characterization spectrally, spatially, temporally, and radiometrically. The knowledge gained from building and calibrating these instruments has aided in technology advancements as the need for developing more accurate instruments has increased. In order to understand the prelaunch performance of these instruments, NASA's Langley Research Center (LaRC) has partnered with the Thermal Radiation Group at Virginia Tech to develop first-principle, dynamic electrothermal, numerical models of scanning radiometers that can be used to enhance the understanding of such instruments. The body of research presented here documents the construction of these models by highlighting their development and results and possible applications to the next generation of Earth radiation budget instrument. Much of the effort reported here is based on the author's contribution to NASA's now-deselected Radiation Budget Instrument (RBI) project. / Doctor of Philosophy / Earth Radiation Budget (ERB) sensors, such as the Earth Radiation Budget Experiment (ERBE) and the Clouds and the Earth's Radiant Energy System (CERES) have been a crucial part of studying the Earth's radiation budget for the past three decades. The Earth's radiation budget is the natural balance that exists between the energy received from the Sun and the energy radiated back into space. These instruments, which measure the radiative energy arriving and leaving at the top of the Earth's atmosphere, enhance understanding of the roles played by clouds and aerosols in reflecting and absorbing energy, thereby cooling or heating the planet. In order to enable the design for the next-generation Earth radiation budget sensors, NASA Langley has partnered with the Thermal Radiation Group at Virginia Tech to develop a capability for high-fidelity computer modeling that permits the complete characterization of an Earth radiation budget instrument. The resulting simulation consists of computer models for optical components, calibration targets, detecting elements and a source that includes information on anisotropy of a given Earth scene-type (clear vs. cloudy scene, ocean, desert, etc.). The modeling tool permits simulation of the entire science data stream as photons entering the instrument are converted to digital counts leaving the instrument, and provides the flexibility to observe various scene-types whether they be calibration targets or Earth scenes. This dissertation highlights the construction of this modeling tool and its capabilities as it is applied to NASA's now-deselected Radiation Budget Instrument.

Page generated in 0.0308 seconds