• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desarrollo de catalizadores basados en Cu/ceria-zirconia para la combustión de carbonilla y eliminación de NOx en motores diésel

Giménez-Mañogil, Javier 09 September 2017 (has links)
No description available.
2

Design of solid catalysts for biomass upgrading

Schimming, Sarah McNew 07 January 2016 (has links)
The two main requirements for ceria-zirconia hydrodeoxygenation (HDO) catalysts are the presence of defect sites to bind oxygenates and the ability to adsorb and dissociate hydrogen. Two types of sites were identified for exchange of hydrogen and deuterium. The activation energy for one type of site was associated with H2-D2 exchange through oxygen defect sites. The activation energy for the second type of site was associated with H2-D2 exchange through hydroxyl groups and correlated with crystallite size. Ceria-zirconia can convert guaiacol, a model pyrolysis oil compound, with a high selectivity to phenol, an HDO product. Ceria-zirconia catalysts had a higher conversion of guaiacol to deoxygenated products as well as a higher selectivity towards phenol than pure ceria. They did not deactivate over the course of 72 hours on stream, whereas coking or the presence of water in the feed can cause serious decay of common HDO catalysts HDO. Therefore, ceria-zirconia catalysts are promising HDO catalysts for the first step of deoxygenation. The stability of supported Ru on ZrO2 in acidic or basic environments at reaction temperature is examined. In this study, the ruthenium dispersion is greatly increased by hydrothermal treatment in acidic and basic pH without alterations to the surface area, pore volume, pore size or crystal structure. An increase in Ru dispersion showed an increase in the selectivity to propylene glycol relative to ethylene glycol. A decrease in total Lewis acid site concentration was correlated with a decrease in the ethylene glycol yield. The conclusions of this study indicate that stability of catalysts in realistic industrial environments is crucial to the design of catalysts for a reaction.
3

Estudos ab initio das propriedades estruturais, energéticas e eletrônicas de clusters de óxidos mistos de Ce15-nZrnO30,(n=0-15) / Ab initio study of the structural, energetic and electronic properties of mixed oxides clusters Ce15-nZrnO30, (n = 0-15)

Sousa, Priscilla Felício 10 October 2017 (has links)
Partículas nanométricas de óxidos têm despertado um grande interesse devido a ampla gama de aplicações, por exemplo em catálise, óptica, sensores de gases, semicondutores, entre outros. Por isso, há vários estudos para uma grande variedade de óxidos com composição MO2, em função do tamanho e terminação da superfície. Também existe um grande interesse no estudo de óxidos mistos devido a possibilidade de combinar dois ou mais óxidos em escala nanométrica, com objetivo de controlar as propriedades físicas e químicas em função da composição. Neste trabalho, utilizou-se os metais Ce e Zr, uma vez que os óxidos desses elementos têm um grande potencial de aplicação na indústria como em células combustíveis, reações catalíticas entre outros. Os óxidos mistos Cem-nZrnO2mpossuem a capacidade de armazenar ou liberar oxigênio ao longo de reações químicas, e portanto, são largamente empregados em catalisadores de três-vias na indústria automobilística. Neste estudo foi empregada a teoria do funcional da densidade (DFT) com o funcional de troca-correlação proposto por Perdew, Burke e Ernzerhof (PBE). Investigou-se as propriedades estruturais, energéticas e eletrônicas dos clusters puros e então, selecionou-se quatro estruturas, as quais foram aplicadas na construção dos clusters de óxidos mistos de céria-zircônia. Por meio dos estudos de eletronegatividade de Mulliken, verificou-se que os clusters de zircônia apresentam uma tendência maior em atrair elétrons, quando comparados aos clusters de céria. Observou-se também que as estruturas de mais baixa energia de céria e zircônia apresentam diferentes números de coordenação (CN), no caso 4 e 3 NNN (vizinhos mais próximos), respectivamente. Isso se deve ao fato de tais estruturas não serem esféricas e também aos diferentes tamanhos atômicos de Ce e Zr. Além disso, notou-se que há uma maior compactação dos clusters de menor energia se comparados aos de maior energia, tanto para o céria quanto para zircônia, obteve-se os seguintes valores de diâmetro 1 nm e 2 nm para essa variação da energia relativa. Com esses resultados tem-se que há uma propensão dos clusters mistos, manterem propriedades semelhantes dos cluster puros, devido a similaridade entre o comportamento das estruturas de céria e da zircônia, os quais foram os agentes geradores dos clusters mistos. Observou-se que as propriedades estruturais dos cluster puros como CN, dav, σ e raio, mantiveram-se com a mesmas tendências nos clusters mistos. Para a obtenção do cluster mais estável analisou-se a energia de formação dos sistemas, sendo que a configuração mais favorável de ser formada é a Ce0,27Zr0,73O2, a qual considerou-se a estrutura pGMC representativa das configurações estudadas. Levando-se em consideração os resultados obtidos, na análise de formação dos clusters mistos delimitou-se a região de maior probabilidade de formação de clusters mistos estáveis entre 25% a 60%, de cério na composição. / Oxide nanomaterials have aroused great interest due to their application in several fields, such as in catalysis, optics, gas sensors, semiconductors, among others. Therefore, there are several studies for a wide variety of oxides with composition, and MO2, depending on the size and surface termination. There is also great interest in the study of mixed oxides due to the possibility of combining two or more oxides on a nanometric scale, in order to control their physical and chemical properties. In this work the metals Ce and Zr were used, since the oxides of these elements have a promising application in the industry as in fuel cells, catalytic reactions among others. The mixed oxides Cem-nZrnO2m present the ability to store or release oxygen during chemical reactions and therefore are widely used in three-way catalysts in the automotive industry. In this study, we used density functional theory (DFT) with PBE for the exchange-correlation functional. To investigate the structural, electronic and energetic properties of clusters, four selected structures were applied to build up the mixed ceria-zirconia oxides. Through the Mulliken electronegativity studies, it was found that zirconia clusters have a greater tendency to attract electrons, than the ceria clusters. Also observed that the lowest energy structures of ceria and zirconia have different coordination numbers, 4 and 3 NNN (Number of Nearest Neighbours), respectively. This is due to the fact that such structures are not spherical and have different atomic sizes. In addition, it was noted that there is a higher compaction of the clusters of lower energy compared to higher energy, for both ceria and zirconia, it was obtained the following values of diameter 1 nm and 2 nm for this variation of relative energy change. These results show that there is a trend in which mixed clusters have similar properties of the pure cluster, due to the similarity between the behavior of the structures of ceria and zirconia, which were the generating agents of the mixed clusters. It was observed that the structural properties of the pure clusters like CN, dav, σ and cluster radii, remained with the same trends in the mixed clusters. To obtain the most stable clusters we analyzed the formation energy of the systems, the most favorable configuration to be obtained is Ce0,27Zr0,73O2, which was considered the representative pGMC structure of the studied configurations. Taking into consideration the results, obtained in the analysis of the formation of the mixed clusters, delimited the higher probability of formation of mixed stable clusters between 25% to 60%, of cerium in composition.
4

Estudos ab initio das propriedades estruturais, energéticas e eletrônicas de clusters de óxidos mistos de Ce15-nZrnO30,(n=0-15) / Ab initio study of the structural, energetic and electronic properties of mixed oxides clusters Ce15-nZrnO30, (n = 0-15)

Priscilla Felício Sousa 10 October 2017 (has links)
Partículas nanométricas de óxidos têm despertado um grande interesse devido a ampla gama de aplicações, por exemplo em catálise, óptica, sensores de gases, semicondutores, entre outros. Por isso, há vários estudos para uma grande variedade de óxidos com composição MO2, em função do tamanho e terminação da superfície. Também existe um grande interesse no estudo de óxidos mistos devido a possibilidade de combinar dois ou mais óxidos em escala nanométrica, com objetivo de controlar as propriedades físicas e químicas em função da composição. Neste trabalho, utilizou-se os metais Ce e Zr, uma vez que os óxidos desses elementos têm um grande potencial de aplicação na indústria como em células combustíveis, reações catalíticas entre outros. Os óxidos mistos Cem-nZrnO2mpossuem a capacidade de armazenar ou liberar oxigênio ao longo de reações químicas, e portanto, são largamente empregados em catalisadores de três-vias na indústria automobilística. Neste estudo foi empregada a teoria do funcional da densidade (DFT) com o funcional de troca-correlação proposto por Perdew, Burke e Ernzerhof (PBE). Investigou-se as propriedades estruturais, energéticas e eletrônicas dos clusters puros e então, selecionou-se quatro estruturas, as quais foram aplicadas na construção dos clusters de óxidos mistos de céria-zircônia. Por meio dos estudos de eletronegatividade de Mulliken, verificou-se que os clusters de zircônia apresentam uma tendência maior em atrair elétrons, quando comparados aos clusters de céria. Observou-se também que as estruturas de mais baixa energia de céria e zircônia apresentam diferentes números de coordenação (CN), no caso 4 e 3 NNN (vizinhos mais próximos), respectivamente. Isso se deve ao fato de tais estruturas não serem esféricas e também aos diferentes tamanhos atômicos de Ce e Zr. Além disso, notou-se que há uma maior compactação dos clusters de menor energia se comparados aos de maior energia, tanto para o céria quanto para zircônia, obteve-se os seguintes valores de diâmetro 1 nm e 2 nm para essa variação da energia relativa. Com esses resultados tem-se que há uma propensão dos clusters mistos, manterem propriedades semelhantes dos cluster puros, devido a similaridade entre o comportamento das estruturas de céria e da zircônia, os quais foram os agentes geradores dos clusters mistos. Observou-se que as propriedades estruturais dos cluster puros como CN, dav, σ e raio, mantiveram-se com a mesmas tendências nos clusters mistos. Para a obtenção do cluster mais estável analisou-se a energia de formação dos sistemas, sendo que a configuração mais favorável de ser formada é a Ce0,27Zr0,73O2, a qual considerou-se a estrutura pGMC representativa das configurações estudadas. Levando-se em consideração os resultados obtidos, na análise de formação dos clusters mistos delimitou-se a região de maior probabilidade de formação de clusters mistos estáveis entre 25% a 60%, de cério na composição. / Oxide nanomaterials have aroused great interest due to their application in several fields, such as in catalysis, optics, gas sensors, semiconductors, among others. Therefore, there are several studies for a wide variety of oxides with composition, and MO2, depending on the size and surface termination. There is also great interest in the study of mixed oxides due to the possibility of combining two or more oxides on a nanometric scale, in order to control their physical and chemical properties. In this work the metals Ce and Zr were used, since the oxides of these elements have a promising application in the industry as in fuel cells, catalytic reactions among others. The mixed oxides Cem-nZrnO2m present the ability to store or release oxygen during chemical reactions and therefore are widely used in three-way catalysts in the automotive industry. In this study, we used density functional theory (DFT) with PBE for the exchange-correlation functional. To investigate the structural, electronic and energetic properties of clusters, four selected structures were applied to build up the mixed ceria-zirconia oxides. Through the Mulliken electronegativity studies, it was found that zirconia clusters have a greater tendency to attract electrons, than the ceria clusters. Also observed that the lowest energy structures of ceria and zirconia have different coordination numbers, 4 and 3 NNN (Number of Nearest Neighbours), respectively. This is due to the fact that such structures are not spherical and have different atomic sizes. In addition, it was noted that there is a higher compaction of the clusters of lower energy compared to higher energy, for both ceria and zirconia, it was obtained the following values of diameter 1 nm and 2 nm for this variation of relative energy change. These results show that there is a trend in which mixed clusters have similar properties of the pure cluster, due to the similarity between the behavior of the structures of ceria and zirconia, which were the generating agents of the mixed clusters. It was observed that the structural properties of the pure clusters like CN, dav, σ and cluster radii, remained with the same trends in the mixed clusters. To obtain the most stable clusters we analyzed the formation energy of the systems, the most favorable configuration to be obtained is Ce0,27Zr0,73O2, which was considered the representative pGMC structure of the studied configurations. Taking into consideration the results, obtained in the analysis of the formation of the mixed clusters, delimited the higher probability of formation of mixed stable clusters between 25% to 60%, of cerium in composition.
5

Pd/Al<sub>2</sub>O<sub>3</sub> -based automotive exhaust gas catalysts:the effect of BaO and OSC material on NO<sub>x</sub> reduction

Kolli, T. (Tanja) 02 May 2006 (has links)
Abstract The aim of the thesis was to find new information on the effect of BaO and oxygen storage capacity material on NOx reduction. A total of nine different kinds of Pd/Al2O3-based metallic monoliths were studied. Promoters such as oxygen storage capacity material (OSC material in our case Cex-1ZrxO2 mixed oxides) and stabilisers such as barium (BaO) were added into the catalyst alone or together to improve catalyst properties such as catalytic activity, selectivity, and thermal stability. The key aspects in this thesis can be divided into four parts. First, the behaviour of NO reduction and CO as well as C2H4 oxidation over Pd/Al2O3-based catalysts in rich, stoichiometric and lean conditions were studied. Secondly, the effect of BaO and the OSC material in NO reduction was considered. Thirdly, the preparation procedure, i.e. the addition order of BaO, OSC material, and Pd on the catalyst was considered. Finally, the effect of ageing on the behaviour of catalysts was investigated. Several characterization methods (in situ DRIFT, catalytic activity measurements, N2 physisorption, CO chemisorption, dynamic oxygen storage capacity measurements, and X-ray diffraction (XRD)) were utilised to find answers to the behaviour of these catalysts in the studied model reactions. The Rapid Ageing Hot in Laboratory (RAHLAB) method was used to age the catalyst. First, it was demonstrated that the CO and hydrocarbon oxidation and NO reduction reactions over the Pd/Al2O3-based catalyst behave differently. NO reduction and CO and hydrocarbon oxidation reactions were dependent on the reaction conditions and temperatures. Secondly, the effect of OSC and BaO on NO reduction was studied separately. In the case of OSC material, it was observed that the OSC material has an effect on NO reduction as well as on CO and C2H4 oxidation. In the case of BaO, it was observed that BaO has a positive effect on NO reduction as well as CO and C2H4 oxidation especially in rich conditions. Thirdly, the effects of the addition order of OSC and BaO on the catalyst was studied separately. It was shown that these have an effect on NO reduction, especially after ageing. First, on the fresh Pd/Al2O3 catalyst it was observed that the addition order of OSC on the catalyst has not an influence on catalyst performance. The effect of the BaO addition order on the Pd/OSC/Al2O3-based catalyst is found to be insignificant, especially, after the ageing process. Furthermore, it is observed that the effect of RAHLAB ageing was that the catalyst lost its catalytic activity, stability, and selectivity.
6

RhPt and Ni based catalysts for fuel reforming in energy conversion

González Arcos, Angélica Viviana January 2015 (has links)
Although current trends in global warming are of great concern, energy demand is still increasing, resulting in increasing pollutant emissions. To address this issue, we need reliable renewable energy sources, lowered pollutant emissions, and efficient and profitable processes for energy conversion. We also need to improve the use of the energy, produced by existing infrastructure. Consequently, the work presented in this thesis aims at investigating current scientific and technological challenges in energy conversion through biomass gasification and the alternative use of fossil fuels, such as diesel, in the generation of cleaner electricity through auxiliary power units in the transport sector. Production of chemicals, syngas, and renewable fuels is highly dependent on the development and innovation of catalytic processes within these applications. This thesis focuses on the development and optimization of catalytic technologies in these areas. One of the limitations in the commercialization of the biomass gasification technology is the effective catalytic conversion of tars, formed during gasification. Biomass contains high amounts of alkali impurities, which pass on to the producer gas. Therefore, a new material with alkali tolerance is needed. In the scope of this thesis, a new catalyst support, KxWO3 – ZrO2 with high alkali resistance was developed. The dynamic capability of KxWO3 – ZrO2 to store alkali metals in the crystal structure, enhances the capture of alkali metals "in situ". Alkali metals are also important electronic promoters for the active phase, which usually increases the catalysts activity and selectivity for certain products. Experimental results show that conversion of 1-methylnaphathalene over Ni/KxWO3 – ZrO2 increases in the presence of 2 ppm of gas-phase K (Paper I). This support is considered to contribute to the electronic equilibrium within the metal/support interface, when certain amounts of alkali metals are present. The potential use of this support can be extended to applications in which alkali "storage-release" properties are required, i.e. processes with high alkali content in the process flow, to enhance catalyst lifetime and regeneration. In addition, fundamental studies to understand the adsorption geometry of naphthalene with increasing temperature were performed in a single crystal of Ni(111) by STM analyses. Chapter 9 presents preliminary studies on the adsorption geometry of the molecule, as well as DFT calculations of the adsorption energy. In relation to the use of clean energy for transport applications, hydrogen generation through ATR for FC-APUs is presented in Papers II to V. Two promoted RhPt bimetallic catalysts were selected in a previous bench scale study, supported on La2O3:CeO2/d – Al2O3 and MgO : Y2O3/CeO2 – ZrO2. Catalyst evaluation was performed in a fullscale reformer under real operating conditions. Results showed increased catalyst activity after the second monolithic catalyst due to the effect of steam reforming, WGS reaction, and higher catalyst reducibility of the RhxOy species in the CeO2 – ZrO2 mixed oxide, as a result of the improved redox properties. The influence of sulfur and coke formation on diesel reforming was assessed after 40 h on stream. Sulfur poisoning was evaluated for the intrinsic activity related to the total Rh and Pt area observed after exposure to sulfur. Sulfur concentration in the aged catalyst washcoat was observed to decrease in the axial direction of the reformer. Estimations of the amount of sulfur adsorbed were found to be below the theoretical equilibrated coverage on Rh and Pt, thus showing a partial deactivation due to sulfur poisoning. / <p>QC 20150213</p>
7

Synthèse du carbonate de diméthyle par carboxylation du méthanol catalysée par des oxydes mixtes de cérium et de zirconium : relation structure–activité, étude mécanistique et cinétique / Direct carboxylation of methanol into dimethyl carbonate over ceria/zirconia catalysts : structure-activity relationship, mechanistic and kinetic study

Daniel, Cécile 27 January 2017 (has links)
Le carbonate de diméthyle (DMC) est utilisé comme intermédiaire en chimie des polymères. Actuellement, la production industrielle du DMC met en jeu un procédé polluant et dangereux. En revanche, la synthèse du DMC à partir de méthanol et de CO2 est un procédé « vert ». Cependant, la thermodynamique de la réaction est très défavorable, se traduisant par une conversion inférieure à 1%. L'objectif de cette thèse est de développer et d'étudier des catalyseurs très actifs qui, couplés à un réacteur membranaire, permettraient d'augmenter le rendement et l'activité. Ce manuscrit couvre plusieurs aspects : i) une étude de criblage de catalyseurs, ii) une étude de type structure-activité sur des séries de catalyseurs, basée sur des caractérisations structurales, texturales et de surface, iii) une étude mécanistique et iv) une étude cinétique. Un protocole de mesure d'activité adapté aux faibles conversions est développé. Le criblage catalytique met en évidence l'activité des solutions solides de cérine-zircone (CZ). Les CZ préparées par pyrolyse de flamme sont un ordre de grandeur plus actives que les CZ préparées par coprécipitation. De façon surprenante, il n'est pas possible a priori de distinguer des catalyseurs très actifs et peu actifs à partir de leurs caractéristiques structurales et texturales. Cependant, on observe que l'activité est corrélée à la densité et à la nature des espèces de surfaces méthoxides et carbonates. Le mécanisme réactionnel de l'état de l'art est affiné grâce à des mesures d'échanges isotopiques et de DRIFT. L'étude cinétique intègre des corrections thermodynamiques de l'équilibre de phases du binaire MeOH-CO2 qui constitue un liquide expansé / Dimethylcarbonate (DMC) is used in polymer synthesis as well as a fuel additive and solvent. The current industrial DMC production is a polluting and hazardous process. On the other hand, the direct carboxylation of methanol with CO2 is a green route to DMC. However, this reaction is highly limited by thermodynamics, limiting the conversion to less than 1%. The integration of a catalyst in a catalytic membrane reactor for water and DMC removal, would shift the equilibrium conversion thereby improving the DMC yield. The aim of this thesis is to develop and study highly active catalysts for DMC synthesis. This manuscript covers: (i) catalyst screening (ii) a structure-activity relationship study (iii) a mechanistic approach and (iv) a kinetic study. A protocol to measure the activity at low conversion has been developed. Catalyst screening evidenced solid solutions of ceria/zirconia (CZ) as the most active and selective. Flame sprayed pyrolysis ceria/zirconia are one order of magnitude more active than coprecipitated CZ. Interestingly, structural and textural features like crystalline and porous structure were similar regardless of the activity. Nevertheless, the activity could be correlated to the nature and the density of the methoxides and carbonates surface species. The mechanism was refined by isotopic exchange and DRIFT experiments. A kinetic study was performed in a batch reactor that integrated the physical equilibria of the gas-expanded reacting mixture
8

Réactivité de catalyseurs à base de cérium pour l'oxydation catalytique des colorants textiles en procédé Fenton/photo Fenton / Reactivity of cerium based-catalysts for catalytic oxidation of textile dye in fenton/photo-fenton process

Issa Hamoud, Houeida 15 December 2015 (has links)
Dans cette étude nous avons cherché à évaluer les paramètres et les mécanismes gouvernant la réactivité des catalyseurs à base de cérium lors de la dégradation des colorants textiles, seuls ou en mélange binaire, dans le cadre du procédé Fenton/photo-Fenton. Dans ce but, 5 séries de catalyseurs à base de cérium ont été testées pour déterminer les effets respectifs : (i) de la surface spécifique de CeO2 commercial (SBET = 11, 101,5 ; 148 ; 235 et 284 m2/g), (ii) du dopage au zirconium (oxydes mixtes CexZr1-xO2 avec différentes teneurs en cérium (x = 0 ; 0,2 ; 0,5 ; 0,8 ; 1)), (iii) d’un traitement de sulfatation de CexZr1-xO2 par H2SO4, et (iv) de l’imprégnation de CeO2 par différents métaux (M = Ba, Bi, La, V et Mo). Les propriétés texturales, structurales et chimiques des catalyseurs à base de cérium étudiés ont été dans la plupart des cas caractérisées par porosimétrie à l’azote, DRX, Raman, XPS, FTIR/ATR, DR-UV-Vis et ATG. Les cinétiques de décoloration et de minéralisation de l’Orange II en présence de CeO2 et H2O2 dépendent fortement de la surface spécifique des catalyseurs ainsi que des paramètres opératoires (présence d’irradiation UV-Vis, pH, température, concentration initiale en catalyseur et en H2O2). Par comparaison avec les colorants pris séparément, l’adsorption compétitive de l’Orange II et de l’Acide Vert 25 sur les mêmes sites d’adsorption à pH = 3 réduit les taux de dégradation des deux colorants en mélange. En revanche, l’association de l’Orange et du Vert de Malachite en paires d’ion, permet d’améliorer la cinétique apparente de dégradation du Vert de Malachite d’un facteur 5. Dans ce cas, la réaction de Fenton et la coagulation-floculation contribuent simultanément à l’élimination de deux colorants de charge opposée en présence du système CeO2/H2O2. De plus, les performances des oxydes mixtes Ce-Zr dans le procédé Fenton hétérogène sont étroitement liées à leurs caractéristiques texturales, structurales et chimiques. Les analyses effectuées ont permis de vérifier les phases cristallines des oxydes mixtes de révéler la formation de solutions solides. Le traitement de sulfatation conduit à la diminution de la surface spécifique et l’augmentation de la taille des cristallites des oxydes riches en Ce. La dissolution de CeO2 lors de sulfatation suivie par formation d’une phase amorphe Ce(SO4)2 à la surface du catalyseur a été mise en évidence. Le traitement de sulfatation ainsi que le dopage au Zr permettent d’augmenter la densité de surface en sites réduits Ce(III). Les études en spectroscopies DR-UV-Vis, FTIR/ATR et Raman relatives à l’adsorption et l’activation d’H2O2 par les oxydes mixtes ont permis de mettre en évidence l’existence d’espèces Ce-peroxo de surface, comme intermédiaires pour générer les radicaux hydroxyles. La détermination quantitative de ces espèces par TPD-MS s’est avérée utile pour mieux comprendre les performances catalytiques des oxydes mixtes modifiés ou non. La concentration en Ce de surface, la densité de défauts Ce(III) (augmenté par dopage et le traitement de sulfatation) et la surface spécifique semblent être à cet égard parmi les paramètres les plus influents sur l’activité. L’imprégnation de CeO2 par différents métaux n’a pas montré un impact positif sur la réactivité de ce matériau en procédé Fenton. Un mécanisme général d’activation d’H2O2 a été proposé sur la base des résultats expérimentaux obtenus et la littérature. De point de vue mécanistique, les analyses spectroscopiques par ATR/FTIR et UV-Vis montrent que l’adsorption de l’Orange II à la surface du catalyseur est fortement dépendante du pH du milieu et se fait par des interactions électrostatiques. Le mécanisme de dégradation de l’Orange II, en phase liquide et à la surface du catalyseur, a été étudié par différentes techniques (DR-UV-VIS et ATR/IR, HPLC et GC/MS) / In this work, the parameters and mechanisms governing the reactivity of cerium based materials towards the degradation of textile dyes, taken separately or in binary mixture, in Fenton/photo-Fenton process have been investigated. For this purpose, five sets of catalysts were performed in order to determine the respective effects of : (i) the specific surface area of commercial CeO2 (SBET = 11, 101,5 ; 148 ; 235 and 284 m2/g); (ii) the zirconia doping ((CexZr1-xO2 with different Ce content (x = 0 ; 0,2 ; 0,5 ; 0,8 ; 1)); (iii) the treatment with H2SO4 ; and (iv) the impregnation of different metals in CeO2 (M = Ba, Bi, La, V and Mo). The textural, structural and chemical properties of the studied ceria-based materials were systematically characterized by nitrogen porosimetry, Raman, XRD, XPS, ATR/FTIR, DR-UV-Vis and TGA. Discoloration and mineralization kinetics of Orange II dye in presence of CeO2/H2O2 system are strongly related to the surface area of catalysts and other parameters (UV-Vis irradiation, pH, temperature, concentration of catalyst and H2O2). The presence of another dye with similar (Acid Green 25) or opposite charge (Malachite Green) can also influence the discoloration kinetics of Orange II. Comparing with single dye solutions, the degradation efficiency of both Orange II and Acid Green 25 were reduced in the mixture due to the competitive adsorption of both anionic dyes onto the same surface Ce sites. However, the discoloration of Malachite Green was enhanced in the presence of Orange II due to the simultaneous contribution of both coagulation/flocculation and Fenton-like process. It is suggested that a Malachite Green ion is electrostatically attracted by an Orange II ion at pH = 3. In addition, the performance of the mixed oxides in the heterogeneous Fenton process is strongly related to their textural, structural and chemical properties. Briefly, characterizations by XRD and Raman spectroscopy indicate that these nanosized mixed oxides can be considered as good quality solid solutions and possess structural properties consistent with the known phase diagram of CexZ1-xO2. The sulfation treatment mostly affects the Ce rich catalysts by increasing the crystallite size and lowering the specific surface area. The dissolution of ceria during sulfation followed by formation of Ce(SO4)2 amorphous phase on catalyst surface was investigated by UV-Vis and TGA analysis. Sulfation treatment as well as doping ceria with Zr increases the amount of reduced sites Ce (III) and defect sites.DR-UV-Vis, FTIR/ATR and Raman spectroscopic studies for adsorption and activation of H2O2 on mixed oxides show the formation of surface Ce-peroxo species as intermediate to generate hydroxyl radicals. The relative amounts of these species on the mixed oxides and/or not modified was indirectly determined using TPD-MS, giving rather good indication about the performances of catalysts towards the degradation of dye. The concentration of surface Ce, the density of defects Ce(III) sites (increased by doping and sulfation treatment) and the surface area appear to be among the most important parameters affecting the catalytic activity. Impregnation of ceria with different metals did not show a positive effect on the reactivity of this material in Fenton process. A possible mechanism for the activation of H2O2 was discussed in details according to all the experimental results and to the literature. From a mechanistic viewpoint, it is shown using FTIR/ATR and liquid UV-Vis spectroscopic measurements that the adsorption of the anionic dye is highly pH-dependent and proceeds via electrostatic interactions with surface metal centers. A possible pathway for Orange degradation is proposed on the basis of qualitative and quantitative detection of intermediate compounds, in liquid phase and on catalyst surface, using various techniques (FTIR/ATR, DR-UV-VIS, HPLC and GC/MS)

Page generated in 0.061 seconds