Spelling suggestions: "subject:"corp composite""
1 |
Etude expérimentale et numérique de l'écrasement de stratifiés composites à base de fibres de carbone / Experimental and Numerical Investigation of CFRP Composite Laminates under CrushingIsrar Ahmad, Haris Ahmad Bin 21 February 2014 (has links)
L’un des défis de la simulation numérique de la résistance au crash des structures composites est de pouvoir prédire les endommagements, leur évolution au cours de l’écrasement et l'énergie absorbée, à partir d'un nombre limité de propriétés matériau. Le but de cette étude est d'améliorer la compréhension des mécanismes élémentaires impliqués dans l'écrasement de stratifiés de plis unidirectionnels à base de fibres de carbone et de développer un modèle numérique. Des essais sont réalisés à différentes échelles (macro, micro), et conduisent à la définition d'une nouvelle propriété matériau, essentielle : la contrainte moyenne d'écrasement que peuvent soutenir les plis à 0° ou 90°, et la méthode de caractérisation associée. L’analyse des tests montre également que pour représenter correctement le comportement du matériau pendant le crash (évasement, fragmentation...), il est nécessaire de choisir un modèle à l’échelle méso. Le modèle éléments finis développé repose sur cinq idées principales : 1-mailler chaque pli; 2-utiliser des éléments cohésifs pour représenter le délaminage et l’évasement des plis; 3-pouvoir représenter la rupture des plis en gros fragments; 4-représenter l'écrasement localisé des plis, à leurs extrémités, par l'introduction d'un concept de « free-face-crushing », associé à un critère spécifique basé sur la contrainte moyenne d'écrasement; 5-représenter les contacts entre plis, plis etsocle, plis et débris. Ce modèle phénoménologique est ensuite appliqué à la simulation du crash de plaques stratifiées. A partir des propriétés matérielles élémentaires du pli, il permet de prédire la force, les principaux mécanismes de rupture et la phénoménologie observée lors des expériences. / A challenge in numerical simulation of crashworthiness is to be able to predict the crush damage modes, their evolution during crushing and the energy absorbed in any composite structure from a limited number of material properties. The aim of this study is to improve the understanding of the elementary mechanisms involved in the crushing of CFRP laminates made of unidirectional plies and to develop a numerical model. Crushing tests are performed at different scales (macro, micro), and lead to the definition of a new essential material property: the mean crushing stress that a 0° or 90° ply can support, and its associated characterization method. Tests analyses also show that to correctly represent the material behavior during crushing (splaying, fragmentation…) it is necessary to choose a mesoscale model. The Finite Element model developed in this thesis is based on five main ideas: 1-Meshing of each ply of the laminate; 2-Use of cohesive elements to represent delamination and plies splaying; 3-Possibility to represent failure of pliesinto big-sized fragments; 4-Representation of the localized crushing of plies, at their extremities, with the introduction of a free-face-crushing concept associated to a specific criterion based on the mean crushing stress; 5-Representation ofcontacts between plies, plies and impacted base, plies and debris.This physically based model is then applied to the simulation of the crushing of laminated plates. From elementary material properties of the ply, it allows to predict the force, the main failure mechanisms and the phenomenology observedduring crushing experiments.
|
2 |
ANALYSIS OF SURFACE INTEGRITY IN MACHINING OF CFRP UNDER DIFFERENT COOLING CONDITIONSNagaraj, Arjun 01 January 2019 (has links)
Carbon Fiber Reinforced Polymers (CFRP) are a class of advanced materials widely used in versatile applications including aerospace and automotive industries due to their exceptional physical and mechanical properties. Owing to the heterogenous nature of the composites, it is often a challenging task to machine them unlike metals. Drilling in particular, the most commonly used process for component assembly is critical especially in the aerospace sector which demands parts of highest quality and surface integrity.
Conventionally, all composites are machined under dry conditions. While there are drawbacks related to dry drilling, for example, poor surface roughness, there is a need to develop processes which yield good quality parts. This thesis investigates the machining performance when drilling CFRP under cryogenic, MQL and hybrid (CryoMQL) modes and comparing with dry drilling in terms of the machining forces, delamination, diameter error and surface integrity assessment including surface roughness, hardness and sub-surface damage analysis. Additionally, the effect of varying the feed rate on the machining performance is examined. From the study, it is concluded that drilling using coolant/ lubricant outperforms dry drilling by producing better quality parts. Also, varying the feed rate proved to be advantageous over drilling at constant feed.
|
3 |
Numerical Investigation into The Cutting Forces, Chip Formation Mechanism, and Burr Formation During Slot Milling of Laminated and 3d Printed CFRP CompositesHassan, Md Mahmudul January 2022 (has links)
No description available.
|
4 |
Embedded sensing and actuating in CFRP composite structures - concept and technology demonstration for tailored embeddable sensor-actuator layers (TEmSAL)Hornig, Andreas, Frohberg, Richard, Bätzel, Tim, Gude, Maik, Modler, Niels 21 May 2024 (has links)
Carbon fibre reinforced plastic (CFRP) materials are of interest for the aerospace and aviation industry to master growing economic and ecological challenges. In contrast to conventional metallic materials, they offer both higher specific material properties, such as strengths, stiffnesses, and an increased energy absorption capacity in case of impact loading scenarios. Additionally, the possibility of integrating functional elements, such as actuators and sensors, predestine CFRP for the development of more lightweight structural components. In this study, a generic composite structure is instrumented with embedded piezo ceramic sensor elements. A technology for TEmSAL is presented and applied within an autoclave manufacturing process. Aspects of the designing process, manufacturing and instrumentation as well as experimental impact sensing and self-actuation results are presented and discussed.
|
5 |
Potential and application fields of lightweight hydraulic components in multi-material designUlbricht, Andreas, Gude, Maik, Barfuß, Daniel, Birke, Michael, Schwaar, Andree, Czulak, Andrzej January 2016 (has links)
Hydraulic systems are used in many fields of applications for different functions like energy storage in hybrid systems. Generally the mass of hydraulic systems plays a key role especially for mobile hydraulics (construction machines, trucks, cars) and hydraulic aircraft systems. The main product properties like energy efficiency or payload can be improved by reducing the mass. In this connection carbon fiber reinforced plastics (CFRP) with their superior specific strength and stiffness open up new chances to acquire new lightweight potentials compared to metallic components. However, complex quality control and failure identification slow down the substitution of metals by fiber-reinforced plastics (FRP). But the lower manufacturing temperatures of FRP compared to metals allow the integration of sensors within FRP-components. These sensors then can be advantageously used for many functions like quality control during the manufacturing process or structural health monitoring (SHM) for failure detection during their life cycle. Thus, lightweight hydraulic components made of composite materials as well as sensor integration in composite components are a main fields of research and development at the Institute of Lightweight Engineering and Polymer Technology (ILK) of the TU Dresden as well as at the Leichtbau-Zentrum Sachsen GmbH (LZS).
|
6 |
Studies on the Effects of Carbon Nanotubes on Mechanical Properties of Bisphenol E Cyanate Ester/Epoxy Based Resin Systems and CFRP CompositesSubba Rao, P January 2016 (has links) (PDF)
The search and research for high performance materials for aerospace applications is a continuous evolving process. Among several fibre reinforced polymers, carbon fibre reinforced polymer (CFRP) is well known for its high specific stiffness and strength. Though high modulus and high strength carbon fibre with structural resin systems have currently been established reasonably well and are catering to a wide variety of aerospace structural applications, these properties are generally directional with very high properties along the fibre direction dominated by fibres and low in other directions depending mainly on the resin properties. Thus, there is a need to enhance the mechanical properties of the resin systems for better load transfer and to improve the resin dominated properties like shear strength and properties in directions other than along the fibre. Use of carbon nanotubes (CNTs) with their extraordinary specific stiffness and strength apparently has great potential as an additional reinforcement in resin for development of CNT-CFRP nanocomposites. However, there are several issues that need to be addressed such as compatibility of a particular resin with CNTs, amount of CNTs that can be added, uniform dispersion of these nanotubes, surface treatment and curing process etc., for optimal enhancement of the required properties.
Epoxy and cyanate ester resin systems are finding applications in aerospace structures owing to their desirable set of properties. Of these, bisphenol E cyanate ester (BECy) resin of low viscosity with its low moisture absorption, better dimensional stability, and superior mechanical properties can establish itself as potential structural resin system for these applications. BECy in particular has the advantage of being more suitable for out of autoclave manufacturing process such as Vacuum Assisted Resin Transfer Molding (VARTM). Literature shows that, significant work has been carried out by various researchers reporting improvements using CNTs in epoxy resins along with various associated problems. However, studies on effects of addition of CNTs /fCNTs to BECy-CFRP composite system are not well reported.
Thus, objective of this work is to study the effects of adding pristine and functionalized CNTs to low viscosity cyanate ester as well as epoxy resin systems. Further, to study the effects on mechanical properties of nanocomposites with carbon fibre reinforcement in these CNT dispersed resin system through a combination of experimental and computational approaches.
Multiwall carbon nanotubes (CNTs) without and with different chemical functionalization are chosen to be added to epoxy and BECy resins. The quantity of these CNTs /fCNTs is varied in steps up to 1% by weight. Different methods of mixing such as shear mixing, ultrasonication and combined mixing cycles are implemented to achieve uniform dispersion of these nanotubes in the resin system. Standard test samples are prepared from these mixtures of nanotubes in resin systems to study the variation in mechanical properties. Further, these nanotubes added resin systems are used in fabricating CFRP laminates by VARTM process. Both uni-directional and bi-directional laminates are made with the above modified resin systems with CNTs/fCNTs. Series of experimental investigations are carried out to study various aspects involved in making of nanocomposites and the effects of the same on different mechanical properties of the nanocomposites. Standard specimens are cut out from these laminates to evaluate them for tension, compression, flexure, shear and interlaminar shear strength. The main parameters investigated are the effects of varied quantity of CNTs and functionalized CNTs in the resin mix and in CFRP nanocomposites, effect of different mixing / curing cycles etc. on the mechanical properties of the nanocomposites. The investigations have yielded very interesting and encouraging results to arrive at optimum quantity of CNTs to be added and also the effects of functionalization to achieve enhanced mechanical properties. In addition, correlation of mechanical property enhancements with failure mechanisms, dispersion behaviour and participation of CNTs / fCNTs in load transfer are explained with the aid of scanning electron microscope images.
Computational studies are carried out through atomistic models using computational tools to estimate the mechanical properties, understand and validate the effects of various parameters studied through series of experimental investigations. An atomistic model is built taking into consideration the nanoscale effects of the single wall carbon nanotubes (SWCNTs) and its reinforcement in the BECy resin. Using these atomistic models, mechanical properties of individual SWCNT, BECy polymer resin, polymer with different quantities of added SWCNT, and the CFRP laminates with improved resin are computed. As the interaction of CNT with the polymer is only at the outermost layer and the mechanical properties of either MWCNTs or SWCNTs are too high compared to resin systems, it is not expected to have any difference in the final outcome whether it is MWCNT or SWCNT. Hence, only SWCNTs are considered in computational studies as it helps in reducing the complexity of atomistic models and computational time when coupled with polymer resin. This is valid even for functionalized CNT as functionalization is also a surface phenomenon.
To start with, the mechanical behaviour of SWCNT is studied using molecular mechanics approach. Molecular mechanics based finite element analysis is adopted to evaluate the mechanical properties of armchair, zigzag and chiral SWCNT of different diameters. Three different types of atomic bonds, i.e., carbon-carbon covalent bond and two types of carbon-carbon van der Waals bonds are considered in the carbon nanotube system. The stiffness values of these bonds are calculated using the molecular potentials, namely Morse potential function and Lennard-Jones interaction potential function respectively and these stiffness values are assigned to spring elements in the finite element model of the SWCNT. The importance of inclusion of Lennard-Jones interactions is highlighted in this study. Effect of these non-bonded interactions is studied by making the numerical stiffness of these bonds to negligible levels and found that they significantly reduce the mechanical properties. The effect of non-bonded Lennard-Jones atomic interactions (van der Waal interactions) considered here is a novelty in this work which has not been considered in previous research works. The finite element model of the SWCNT is constructed, appropriate boundary conditions are applied and the behaviour of mechanical properties of SWCNT is studied. It is found that the longitudinal tensile strength and maximum tensile strain of armchair SWCNTs is greater than that of zigzag and chiral SWCNTs and its value increases with increasing SWCNT diameter. The estimated values of the mechanical properties obtained agree well with the published literature data determined using other techniques.
As the systems become more complicated with the inclusion of polymers, molecular dynamics (MD) method using well established codes is more adoptable to study the effect of SWCNTs on BECy. Hence, it is used to model and solve the nanosystems to generate their stress-strain behavior. Further, MD approach followed here can effectively include interfacial interaction between polymer and the CNTs as well. Mechanical properties of SWCNT functionalized SWCNT (fSWCNT), pure BECy resin and that of the CNT nanocomposite consisting of specific quantity of SWCNT / fSWCNT in BECy are estimated using MD method. Atomistic models of SWCNT, fSWCNT, BECy, BECy with specific quantities of CNT / fSWCNT are constructed.
A monomer of BECy is modelled and stabilized before its usage as a building block for modelling of BECy resin and to compute its properties. A cell of specific size containing monomers of BECy and another cell of same size with SWCNT at centre surrounded by BECy monomer molecules are built. The appropriate quantity of SWCNT in resin is modelled. This model captures the required density of the composite resin. The models so constructed are subjected to geometric optimization satisfying the convergence criteria and equilibrated through molecular dynamics to obtain a stable structure. The minimized structure is subjected to small strain in different directions to calculate the Young’s modulus and other moduli of the CNT-BECy resin composite. The process is repeated for different quantities of SWCNT in BECy resin to obtain their moduli. Further, tensile and shear strengths of CNT-BECy are obtained by subjecting the equilibrated structure to a series of applied strains from 0 to 10% in steps of 1%. The stress values corresponding to each strain are obtained and a stress – strain curve is plotted. From the stress- strain curve, the strengths of the CNT -BECy which is the stress corresponding to the modulus after which the material starts to soften are determined. Effects of functionalization on mechanical properties of SWCNT are observed. Further, effects of functionalization of SWCNT are studied with a specific quantity of fSWCNT on different moduli and strengths of BECy are investigated.
The properties of enhanced CNT–BECy nanocomposite resin with different quantities of added CNT obtained through MD are used to estimate the mechanical properties of the CNT-BECy-CFRP nanocomposite using micromechanics model. Further, validation with experimental results is attempted comparing the trends in enhancement of properties of the CNT-BECy resin and CNT-BECy-CFRP nanocomposite system.
The outcome of this research work has been significantly positive in terms of
i) Development of an appropriate process establishing different parameters for dispersing CNTs in the resin system, mixing, curing cycle for making of nanocomposites demonstrating significant and consistent enhancement of mechanical properties of BECy based resin system and CFRP nanocomposites using optimum quantity of CNTs /fCNTs through a series of well planned and executed experimental investigations. Evaluation of mechanical properties for each of the cases has been carried out experimentally.
ii) Establishing a computational methodology involving intricate atomistic modelling and molecular dynamics of nanosystems for estimation of mechanical properties of BECy polymer resin and to study the effects by addition of SWCNT / functionalized SWCNT on the properties. Results obtained through series of experimental investigations have been validated through this computational study. This could be an important step towards realising the potential of this resin system for high performance aerospace applications.
Thus, in brief, detailed experimental work combined with computational studies performed as presented in this thesis resulted in achieving structurally efficient cyanate ester based nanocomposites which is unique and not reported in open literature.
|
Page generated in 0.0871 seconds