• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Machine learning for the prediction of duplex stainless steel mechanical properties : Hardness evolution under low temperature aging

Giard, Baptiste, Karlsson, Sofia January 2021 (has links)
Duplex stainless steels, DSS are stainless steels that consist of the two phases austenite and ferrite.  The DSS have superb properties and are widely used in industries such as nuclear power and in pressure vessels, pipes and in pipelines.  The use of DSS are limited due to embrittlement which occurs at temperatures from 250 to 550 oC. This imposes a general limited service temperature of 250 oC. The mechanism mainly responsible for the embrittlement is a phase separation occurring in the ferrite phase. Furthermore, there is a direct link between the phase separation and the mechanical properties:  the ferrite hardness increases whereas the toughness decreases under low temperature aging.  In this thesis, the low-temperature embrittlement of duplex stainless  steels  was  studied  through  machine learning  modelling  and  experimental hardness-  and  microscopy measurements.   The  resulting  model  describes  the  data with an accuracy, R-squared = 0.94.  In combination with the experimental results, nickel  was identified  as  an  important  parameter  for  the  hardness  evolution.   This work aims to provide a fundamental study for understanding the importance of alloying elements on the phase separation in DSS, and provides a new methodology via a combination of machine learning and key experiments for the material design. / Duplexa rostfria stål är rostfria stål som består av de båda faserna ferrit och austenit. De har extraordinära egenskaper och används brett inom industrin, t ex. i kärnkraftverk och  i  tryckkärl  och  pipelines.  Användningen av  duplexa  rostfria stål  är  begränsad p.g.a.  försprödning som uppstår i legeringarna vid temperaturer mellan 250-550 oC, vilket  medför  att  den  tillåtna  temperaturen  vid  användning  begränsas  till  under 250 oC.  Den  främsta  orsaken  till  försprödningen  är  en  fasseparation  i  den  ferrita fasen under åldring vid låg temperatur.  Vidare leder fasseparationen till mekaniska förändringar i ferritfasen: hårdheten  ökar  medan  segheten  minskar.   I  den här  rapporten  undersöks försprödningen  av  duplexa  rostfria  stål  vid  åldring  med hjälp av datormodellering med maskininlärning samt av experimentella hårdhets- och mikroskopiska  mätningar.   Modellen  hade  en  noggrannhet  (determinationsko- efficienten,  R2)  på  0.94.   Resultatet  från  modellen  visade  tillsammans  med de  experimentella  resultaten  att  nickel  är  ett  legeringsämne  som  har  stor betydelse  för hårdhetsökningen.  Detta  arbete  syftar  till  att  utgöra  en grundläggande  studie  för att förstå påverkan från olika legeringsämnen på fasseparationer i DSS, och bidrar med en ny metodik för materialdesign som kombinerar maskininlärning och utvaldaexperiment. / EIT RawMaterial Project ENDUREIT
2

Simulation methods for the mechanical nonlinearity in MEMS gyroscopes

Putnik, Martin 16 September 2019 (has links)
Im Zuge der Miniaturisierung werden mechanische Nichtlinearitäten immer wichtiger für die Auslegung und Optimierung von mikromechanischen Drehratensensoren. Die vorliegende Arbeit beschäftigt sich mit neuen Simulationsmethoden zur Beschreibung dieser mechanischen Nichtlinearitäten. Die Methoden werden mit Benchmark-Simulationen und Messergebnissen validiert. Die Genauigkeit der neuen Simulationsmethoden erlaubt den Einsatz in der Designoptimierung von kommerziellen MEMS Drehratensensoren. / In this thesis, new simulation methods for the mechanical nonlinearities in microelectromechanical gyroscopes are developed and validated with benchmark simulations and experimental results. The benchmark simulations use transient finite element analysis that consider geometric nonlinear effects. Experimental results are from Laser Doppler Vibrometry and electrical measurements on wafer level. Two different simulation methods, the energy- and stiffness-based approach, are compared with respect to numerical performance and accuracy. In order to evaluate these methods, four different mechanical structures are taken into account: a doubly-clamped beam, a gyroscope test structure and two state-of-the-art gyroscopes with 1 and 2 axes. For the accuracy measurement, the simulated frequency shifts of modes are compared to the true frequency shifts that are developed from either benchmark simulation, Laser Doppler Vibrometry or electrical measurement. The presented methods allow to predict the frequency shift of modes accurately and with a minimum of computational cost. Furthermore, the methodologies allow to generate modal reduced order models which are compatible with common model order reduction in the field. This makes it possible to incorporate mechanical nonlinearity in already established reduced order models of gyroscopes. The simulation and modeling strategies are applicable for generic actuated structures that can be also in different fields of study such as the aerospace and earthquake engineering.

Page generated in 0.0611 seconds