1 |
Mobilaus duomenų perdavimo (GPRS) ir vietinių belaidžių tinklų (WLAN) integracijos ir sąveikos tyrimas / Analysis of integration and interoperability of GPRS and WLAN networksBaubinas, Tomas 25 June 2005 (has links)
Nowadays the popularity of WLANs is growing very rapidly. The basic solution for the connection of WLAN users to the global internet network is using leased lines or the other standard data transmission networks. But there may occur situations, when the only network for the data transmission we can use for the connection to the internet, is GSM network. In such a case, we are proposing to connect the users of WAN/WLAN networks by using GSM network, which has complete coverage in the territory of Lithuania. To guarantee the sufficient data transfer rate, we use bonding of several parallel GPRS/EDGE/UMTS channels into one total channel. In such a way we increase the reliability and data transfer rate of the total mobile data transmission channel. The parallel channels are bonded into one total channel by using either the hardware (Cisco) routers, or the software routers, configured using network administration tools of Linux operating system. In this work we give all the tools and configuration settings necessary for the realization of such a system. The results of QoS characteristics measurements are given too. We measure packet delay and data transfer rate. The majority of measurements are made by using several parallel GPRS channels because of wide spread GPRS technologies. The key accent of the system is free selection of the physical layer (OSI model) of the parallel channel. So we can bond either several GPRS, or EDGE, or UMTS channels.
|
2 |
Optimization and Algorithms for Wireless Networks: Enhancing Problem Solvability, Channel Bonding Under Demand Stochasticity, and Receiver Characteristic AwarenessAbdelfattah, Amr Nabil A. 10 January 2018 (has links)
5G networks appear on the horizon with distinguished Quality of Service (QoS) requirements such as aggregated data rate and latency. Managing such networks in either a distributed or centralized manner to best utilize the available scarce resources is still a big challenge. Better mechanisms are needed for resource allocation. In this dissertation, we discuss three distinct research problems related to this theme.
The first part addresses enhancing the solvability of network optimization problems. For the class of problems studied, we show that a traditionally-formulated model is insufficient from a problem-solving perspective. When the size of the problem increases, even state-of-the-art optimizers cannot obtain an optimal solution because of memory constraints. We show that augmenting the model with suitable additional constraints and structure enables the optimizer to derive optimal solutions, or significantly reduce the optimality gap.
The second problem is optimal channel bonding in wireless LANs under demand uncertainty. An access point (AP) can aggregate multiple contiguous channels to satisfy demand. We discuss how to optimally utilize available frequency bands under uncertainty in AP demand using two stochastic optimization frameworks: a static scheme which minimizes the total occupied bandwidth while satisfying the demand of each AP with probability at least β and an adaptive scheme that allows adaptability of the bandwidth allocation in response to the AP demand variations. Given its complexity, we propose a novel framework to solve the adaptive stochastic optimization problem efficiently.
The third problem is to allocate resources with receiver characteristic awareness in a multiple radio access technology environment. We propose a novel adjacent channel interference (ACI)-aware joint channel and power allocation framework that takes into account receiver imperfections arising due to (i) imperfect image frequency rejection and (ii) analog-to-digital converter aliasing. As the overall problem is in the form of Mixed-Integer-Linear-Programming (MILP) which is NP-hard, we develop an efficient algorithm to solve it. / Ph. D. / The applications of next generation wireless networks have distinct requirements such as high speed for video streaming, low delay for interactive applications, and scalability to manage huge numbers of wireless devices. Managing such networks is challenging given the scarcity of wireless resources. In this dissertation, we discuss three distinct research problems related to this theme. The first part addresses enhancing the solvability of network optimization problems. State-of-the-art commercial optimization tools are unable to solve these problems for reasonable network sizes. We propose multiple strategies that help the tool obtain optimal solutions quickly. The second part considers indoor wireless networks. For such a network, we propose a technique that matches the instantaneous resources allocated to each location in the network with the amount of data traffic currently at the location. The third part addresses a problem of a network with multiple wireless transmitters and receivers where each receiver suffers from interference from other transmitters differently. We develop an algorithm to allocate resources and adjust transmit power so that each pair can communicate while meeting a minimum required data rate. The three parts of the dissertation are useful in either saving resources and hence allowing more users to use the network, or providing higher service quality for wireless device users.
|
3 |
Draft-N 2.0 : En jämförande studie av täckningsgrad och bandbredd i trådlösa nätverk av typ hot-spot med IEEE 802.11A/G respektive IEEE 802.11N Draft 2.0Mölleborg, Gabriel, Henriksson, Joel January 2008 (has links)
<p>Rapporten är en jämförande studie av täckningsgrad och bandbredd i trådlösa nätverk av typ hot-spot med IEEE 802.11A/G respektive IEEE 802.11N Draft 2.0. Studien är gjord i tre olika scenarion på Kvarnholmen i Kalmar under april och maj månad 2008.</p>
|
4 |
Draft-N 2.0 : En jämförande studie av täckningsgrad och bandbredd i trådlösa nätverk av typ hot-spot med IEEE 802.11A/G respektive IEEE 802.11N Draft 2.0Mölleborg, Gabriel, Henriksson, Joel January 2008 (has links)
Rapporten är en jämförande studie av täckningsgrad och bandbredd i trådlösa nätverk av typ hot-spot med IEEE 802.11A/G respektive IEEE 802.11N Draft 2.0. Studien är gjord i tre olika scenarion på Kvarnholmen i Kalmar under april och maj månad 2008.
|
5 |
Improved Spectrum Usage with Multi-RF Channel Aggregation Technologies for the Next-Generation Terrestrial BroadcastingGiménez Gandia, Jordi Joan 01 July 2015 (has links)
[EN] Next-generation terrestrial broadcasting targets at enhancing spectral efficiency to overcome the challenges derived from the spectrum shortage as a result of the progressive allocation of frequencies - the so-called Digital Dividend - to satisfy the growing demands for wireless broadband capacity. Advances in both transmission standards and video coding are paramount to enable the progressive roll-out of high video quality services such as HDTV (High Definition Televison) or Ultra HDTV. The transition to the second generation European terrestrial standard DVB-T2 and the introduction of MPEG-4/AVC video coding already enables the transmission of 4-5 HDTV services per RF (Radio Frequency) channel. However, the impossibility to allocate higher bit-rate within the remaining spectrum could jeopardize the evolution of the DTT platforms in favour of other high-capacity systems such as the satellite or cable distribution platforms. Next steps are focused on the deployment of the recently released High Efficiency Video Coding (HEVC) standard, which provides more than 50% coding gain with respect to AVC, with the next-generation terrestrial standards. This could ensure the competitiveness of the DTT.
This dissertation addresses the use of multi-RF channel aggregation technologies to increase the spectral efficiency of future DTT networks. The core of the Thesis are two technologies: Time Frequency Slicing (TFS) and Channel Bonding (CB).
TFS and CB consist in the transmission of the data of a TV service across multiple RF channels instead of using a single channel. CB spreads data of a service over multiple classical RF channels (RF-Mux). TFS spreads the data by time-slicing (slot-by-slot) across multiple RF channels which are sequentially recovered at the receiver by frequency hopping. Transmissions using these features can benefit from capacity and coverage gains. The first one comes from a more efficient statistical multiplexing (StatMux) for Variable Bit Rate (VBR) services due to a StatMux pool over a higher number of services. Furthermore, CB allows increasing service data rate with the number of bonded RF channels and also advantages when combined with SVC (Scalable Video Coding). The coverage gain comes from the increased RF performance due to the reception of the data of a service from different RF channels rather that a single one that could be, eventually, degraded. Robustness against interferences is also improved since the received signal does not depend on a unique potentially interfered RF channel.
TFS was firstly introduced as an informative annex in DVB-T2 (not normative) and adopted in DVB-NGH (Next Generation Handheld). TFS and CB are proposed for inclusion in ATSC 3.0. However, they have never been implemented. The investigations carried out in this dissertation employ an information-theoretical approach to obtain their upper bounds, physical layer simulations to evaluate the performance in real systems and the analysis of field measurements that approach realistic conditions of the network deployments. The analysis report coverage gains about 4-5 dB with 4 RF channels and high capacity gains already with 2 RF channels.
This dissertation also focuses on implementation aspects. Channel bonding receivers require one tuner per bonded RF channel. The implementation of TFS with a single tuner demands the fulfilment of several timing requirements. However, the use of just two tuners would still allow for a good performance with a cost-effective implementation by the reuse of existing chipsets or the sharing of existing architectures with dual tuner operation such as MIMO (Multiple Input Multiple Output). / [ES] La televisión digital terrestre (TDT) de última generación está orientada a una necesaria mejora de la eficiencia espectral con el fin de abordar los desafíos derivados de la escasez de espectro como resultado de la progresiva asignación de frecuencias - el llamado Dividendo Digital - para satisfacer la creciente demanda de capacidad para la banda ancha inalámbrica. Los avances tanto en los estándares de transmisión como de codificación de vídeo son de suma importancia para la progresiva puesta en marcha de servicios de alta calidad como la televisión de Ultra AD (Alta Definición). La transición al estándar europeo de segunda generación DVB-T2 y la introducción de la codificación de vídeo MPEG-4 / AVC ya permite la transmisión de 4-5 servicios de televisión de AD por canal RF (Radiofrecuencia). Sin embargo, la imposibilidad de asignar una mayor tasa de bit sobre el espectro restante podría poner en peligro la evolución de las plataformas de TDT en favor de otros sistemas de alta capacidad tales como el satélite o las distribuidoras de cable. El siguiente paso se centra en el despliegue del reciente estándar HEVC (High Efficiency Video Coding), que ofrece un 50% de ganancia de codificación con respecto a AVC, junto con los estándares terrestres de próxima generación, lo que podría garantizar la competitividad de la TDT en un futuro cercano.
Esta tesis aborda el uso de tecnologías de agregación de canales RF que permitan incrementar la eficiencia espectral de las futuras redes. La tesis se centra en torno a dos tecnologías: Time Frequency Slicing (TFS) y Channel Bonding (CB).
TFS y CB consisten en la transmisión de los datos de un servicio de televisión a través de múltiples canales RF en lugar de utilizar un solo canal. CB difunde los datos de un servicio a través de varios canales RF convencionales formando un RF-Mux. TFS difunde los datos a través de ranuras temporales en diferentes canales RF. Los datos son recuperados de forma secuencial en el receptor mediante saltos en frecuencia. La implementación de estas técnicas permite obtener ganancias en capacidad y cobertura. La primera de ellas proviene de una multiplexación estadística (StatMux) de servicios de tasa variable (VBR) más eficiente. Además, CB permite aumentar la tasa de pico de un servicio de forma proporcional al número de canales así como ventajas al combinarla con codificación de vídeo escalable. La ganancia en cobertura proviene de un mejor rendimiento RF debido a la recepción de los datos de un servicio desde diferentes canales en lugar uno sólo que podría estar degradado. Del mismo modo, es posible obtener una mayor robustez frente a interferencias ya que la recepción o no de un servicio no depende de si el canal que lo alberga está o no interferido.
TFS fue introducido en primer lugar como un anexo informativo en DVB-T2 (no normativo) y posteriormente fue adoptado en DVB-NGH (Next Generation Handheld). TFS y CB han sido propuestos para su inclusión en ATSC 3.0. Aún así, nunca han sido implementados. Las investigaciones llevadas a cabo en esta Tesis emplean diversos enfoques basados en teoría de la información para obtener los límites de ganancia, en simulaciones de capa física para evaluar el rendimiento en sistemas reales y en el análisis de medidas de campo. Estos estudios reportan ganancias en cobertura en torno a 4-5 dB con 4 canales e importantes ganancias en capacidad aún con sólo 2 canales RF.
Esta tesis también se centra en los aspectos de implementación. Los receptores para CB requieren un sintonizador por canal RF agregado. La implementación de TFS con un solo sintonizador exige el cumplimiento de varios requisito temporales. Sin embargo, el uso de dos sintonizadores permitiría un buen rendimiento con una implementación más rentable con la reutilización de los actuales chips o su introducción junto con las arquitecturas existentes que operan con un doble sintonizador tales como / [CA] La televisió digital terrestre (TDT) d'última generació està orientada a una necessària millora de l'eficiència espectral a fi d'abordar els desafiaments derivats de l'escassetat d'espectre com a resultat de la progressiva assignació de freqüències - l'anomenat Dividend Digital - per a satisfer la creixent demanda de capacitat per a la banda ampla sense fil. Els avanços tant en els estàndards de transmissió com de codificació de vídeo són de la màxima importància per a la progressiva posada en marxa de serveis d'alta qualitat com la televisió d'Ultra AD (Alta Definició). La transició a l'estàndard europeu de segona generació DVB-T2 i la introducció de la codificació de vídeo MPEG-4/AVC ja permet la transmissió de 4-5 serveis de televisió d'AD per canal RF (Radiofreqüència). No obstant això, la impossibilitat d'assignar una major taxa de bit sobre l'espectre restant podria posar en perill l'evolució de les plataformes de TDT en favor d'altres sistemes d'alta capacitat com ara el satèl·lit o les distribuïdores de cable. El següent pas se centra en el desplegament del recent estàndard HEVC (High Efficiency Vídeo Coding), que oferix un 50% de guany de codificació respecte a AVC, junt amb els estàndards terrestres de pròxima generació, la qual cosa podria garantir la competitivitat de la TDT en un futur pròxim.
Aquesta tesi aborda l'ús de tecnologies d'agregació de canals RF que permeten incrementar l'eficiència espectral de les futures xarxes. La tesi se centra entorn de dues tecnologies: Time Frequency Slicing (TFS) i Channel Bonding (CB).
TFS i CB consistixen en la transmissió de les dades d'un servei de televisió a través de múltiples canals RF en compte d'utilitzar un sol canal. CB difon les dades d'un servei a través d'uns quants canals RF convencionals formant un RF-Mux. TFS difon les dades a través de ranures temporals en diferents canals RF. Les dades són recuperades de forma seqüencial en el receptor per mitjà de salts en freqüència. La implementació d'aquestes tècniques permet obtindre guanys en capacitat i cobertura. La primera d'elles prové d'una multiplexació estadística (StatMux) de serveis de taxa variable (VBR) més eficient. A més, CB permet augmentar la taxa de pic d'un servei de forma proporcional al nombre de canals així com avantatges al combinar-la amb codificació de vídeo escalable. El guany en cobertura prové d'un millor rendiment RF a causa de la recepció de les dades d'un servei des de diferents canals en lloc de només un que podria estar degradat. De la mateixa manera, és possible obtindre una major robustesa enfront d'interferències ja que la recepció o no d'un servei no depén de si el canal que l'allotja està o no interferit.
TFS va ser introduït en primer lloc com un annex informatiu en DVB-T2 (no normatiu) i posteriorment va ser adoptat en DVB-NGH (Next Generation Handheld). TFS i CB han sigut proposades per a la seva inclusió en ATSC 3.0. Encara així, mai han sigut implementades. Les investigacions dutes a terme en esta Tesi empren diverses vessants basades en teoria de la informació per a obtindre els límits de guany, en simulacions de capa física per a avaluar el rendiment en sistemes reals i en l'anàlisi de mesures de camp. Aquestos estudis reporten guanys en cobertura entorn als 4-5 dB amb 4 canals i importants guanys en capacitat encara amb només 2 canals RF.
Esta tesi també se centra en els aspectes d'implementació. Els receptors per a CB requerixen un sintonitzador per canal RF agregat. La implementació de TFS amb un sol sintonitzador exigix el compliment de diversos requisit temporals. No obstant això, l'ús de dos sintonitzadors permetria un bon rendiment amb una implementació més rendible amb la reutilització dels actuals xips o la seua introducció junt amb les arquitectures existents que operen amb un doble sintonitzador com ara MIMO (Multiple Input Multiple Output). / Giménez Gandia, JJ. (2015). Improved Spectrum Usage with Multi-RF Channel Aggregation Technologies for the Next-Generation Terrestrial Broadcasting [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/52520
|
6 |
Non-Uniform Constellations for Next-Generation Digital Terrestrial Broadcast SystemsFuentes Muela, Manuel 07 July 2017 (has links)
Nowadays, the digital terrestrial television (DTT) market is characterized by the high capacity needed for high definition TV services. There is a need for an efficient use of the broadcast spectrum, which requires new technologies to guarantee increased capacities. Non-Uniform Constellations (NUC) arise as one of the most innovative techniques to approach those requirements. NUCs reduce the gap between uniform Gray-labelled Quadrature Amplitude Modulation (QAM) constellations and the theoretical unconstrained Shannon limit. With these constellations, symbols are optimized in both in-phase (I) and quadrature (Q) components by means of signal geometrical shaping, considering a certain signal-to-noise ratio (SNR) and channel model.
There are two types of NUC, one-dimensional and two-dimensional NUCs (1D-NUC and 2D-NUC, respectively). 1D-NUCs maintain the squared shape from QAM, but relaxing the distribution between constellation symbols in a single component, with non-uniform distance between them. These constellations provide better SNR performance than QAM, without any demapping complexity increase. 2D-NUCs also relax the square shape constraint, allowing to optimize the symbol positions in both dimensions, thus achieving higher capacity gains and lower SNR requirements. However, the use of 2D-NUCs implies a higher demapping complexity, since a 2D-demapper is needed, i.e. I and Q components cannot be separated.
In this dissertation, NUCs are analyzed from both transmit and receive point of views, using either single-input single-output (SISO) or multiple-input multiple-output (MIMO) antenna configurations. In SISO transmissions, 1D-NUCs and 2D-NUCs are optimized for a wide range of SNRs and different constellation orders. The optimization of rotated 2D-NUCs is also investigated. Even though the demapping complexity is not increased, the SNR gain of these constellations is not significant. The highest rotation gain is obtained for low-order constellations and high SNRs. However, with multi-RF techniques, the SNR gain is drastically increased, since I and Q components are transmitted in different RF channels. In this thesis, multi-RF gains of NUCs with and without rotation are provided for some representative scenarios.
At the receiver, two different implementation bottlenecks are explored. First, the demapping complexity of all considered constellations is analyzed. Afterwards, two complexity reduction algorithms for 2D-NUCs are proposed. Both algorithms drastically reduce the number of distances to compute. Moreover, both are finally combined in a single demapper. Quantization of NUCs is also explored in this dissertation, since LLR values and I/Q components are modified when using these constellations, compared to traditional QAM constellations. A new algorithm that is based on the optimization of the quantizer levels for a particular constellation is proposed.
The use of NUCs in multi-antenna communications is also investigated. It includes the optimization in one or two antennas, the use of power imbalance, the cross-polar discrimination (XPD) between receive antennas, or the use of different demappers. Assuming different values for the parameters evaluated, new Multi-Antenna Non-Uniform Constellations (MA-NUC) are obtained by means of a particularized re-optimization process, specific for MIMO. At the receiver, an extended demapping complexity analysis is performed, where it is shown that the use of 2D-NUCs in MIMO extremely increases the demapping complexity. As an alternative, an efficient solution for 2D-NUCs and MIMO systems based on Soft-Fixed Sphere Decoding (SFSD) is proposed. The main drawback is that SFSD demappers do not work with 2D-NUCs, since they perform a Successive Interference Cancellation (SIC) step that needs to be performed in separated I and Q components. The proposed method quantifies the closest symbol using Voronoi regions and allows SFSD demappers to work. / Hoy en día, el mercado de la televisión digital terrestre (TDT) está caracterizado por la alta capacidad requerida para transmitir servicios de televisión de alta definición y el espectro disponible. Es necesario por tanto un uso eficiente del espectro radioeléctrico, el cual requiere nuevas tecnologías para garantizar mayores capacidades. Las constelaciones no-uniformes (NUC) emergen como una de las técnicas más innovadoras para abordar tales requerimientos. Las NUC reducen el espacio existente entre las constelaciones uniformes QAM y el límite teórico de Shannon. Con estas constelaciones, los símbolos se optimizan en ambas componentes fase (I) y cuadratura (Q) mediante técnicas geométricas de modelado de la señal, considerando un nivel señal a ruido (SNR) concreto y un modelo de canal específico.
Hay dos tipos de NUC, unidimensionales y bidimensionales (1D-NUC y 2D-NUC, respectivamente). Las 1D-NUC mantienen la forma cuadrada de las QAM, pero permiten cambiar la distribución entre los símbolos en una componente concreta, teniendo una distancia no uniforme entre ellos. Estas constelaciones proporcionan un mejor rendimiento SNR que QAM, sin ningún incremento en la complejidad en el demapper. Las 2D-NUC también permiten cambiar la forma cuadrada de la constelación, permitiendo optimizar los símbolos en ambas dimensiones y por tanto obteniendo mayores ganancias en capacidad y menores requerimientos en SNR. Sin embargo, el uso de 2D-NUCs implica una mayor complejidad en el receptor.
En esta tesis se analizan las NUC desde el punto de vista tanto de transmisión como de recepción, utilizando bien configuraciones con una antena (SISO) o con múltiples antenas (MIMO). En transmisiones SISO, se han optimizado 1D-NUCs para un rango amplio de distintas SNR y varios órdenes de constelación. También se ha investigado la optimización de 2D-NUCs rotadas. Aunque la complejidad no aumenta, la ganancia SNR de estas constelaciones no es significativa. La mayor ganancia por rotación se obtiene para bajos órdenes de constelación y altas SNR. Sin embargo, utilizando técnicas multi-RF, la ganancia aumenta drásticamente puesto que las componentes I y Q se transmiten en distintos canales RF. En esta tesis, se han estudiado varias ganancias multi-RF representativas de las NUC, con o sin rotación.
En el receptor, se han identificado dos cuellos de botella diferentes en la implementación. Primero, se ha analizado la complejidad en el receptor para todas las constelaciones consideradas y, posteriormente, se proponen dos algoritmos para reducir la complejidad con 2D-NUCs. Además, los dos pueden combinarse en un único demapper. También se ha explorado la cuantización de estas constelaciones, ya que tanto los valores LLR como las componentes I/Q se ven modificados, comparando con constelaciones QAM tradicionales. Además, se ha propuesto un algoritmo que se basa en la optimización para diferentes niveles de cuantización, para una NUC concreta.
Igualmente, se ha investigado en detalle el uso de NUCs en MIMO. Se ha incluido la optimización en una sola o en dos antenas, el uso de un desbalance de potencia, factores de discriminación entre antenas receptoras (XPD), o el uso de distintos demappers. Asumiendo distintos valores, se han obtenido nuevas constelaciones multi-antena (MA-NUC) gracias a un nuevo proceso de re-optimización específico para MIMO. En el receptor, se ha extendido el análisis de complejidad en el demapper, la cual se incrementa enormemente con el uso de 2D-NUCs y sistemas MIMO. Como alternativa, se propone una solución basada en el algoritmo Soft-Fixed Sphere Decoding (SFSD). El principal problema es que estos demappers no funcionan con 2D-NUCs, puesto que necesitan de un paso adicional en el que las componentes I y Q necesitan separarse. El método propuesto cuantifica el símbolo más cercano utilizando las regiones de Voronoi, permitiendo el uso de este tipo de receptor. / Actualment, el mercat de la televisió digital terrestre (TDT) està caracteritzat per l'alta capacitat requerida per a transmetre servicis de televisió d'alta definició i l'espectre disponible. És necessari per tant un ús eficient de l'espectre radioelèctric, el qual requereix noves tecnologies per a garantir majors capacitats i millors servicis. Les constel·lacions no-uniformes (NUC) emergeixen com una de les tècniques més innovadores en els sistemes de televisió de següent generació per a abordar tals requeriments. Les NUC redueixen l'espai existent entre les constel·lacions uniformes QAM i el límit teòric de Shannon. Amb estes constel·lacions, els símbols s'optimitzen en ambdós components fase (I) i quadratura (Q) per mitjà de tècniques geomètriques de modelatge del senyal, considerant un nivell senyal a soroll (SNR) concret i un model de canal específic.
Hi ha dos tipus de NUC, unidimensionals i bidimensionals (1D-NUC i 2D-NUC, respectivament). 1D-NUCs mantenen la forma quadrada de les QAM, però permet canviar la distribució entre els símbols en una component concreta, tenint una distància no uniforme entre ells. Estes constel·lacions proporcionen un millor rendiment SNR que QAM, sense cap increment en la complexitat al demapper. 2D-NUC també canvien la forma quadrada de la constel·lació, permetent optimitzar els símbols en ambdós dimensions i per tant obtenint majors guanys en capacitat i menors requeriments en SNR. No obstant això, l'ús de 2D-NUCs implica una major complexitat en el receptor, ja que es necessita un demapper 2D, on les components I i Q no poden ser separades.
En esta tesi s'analitzen les NUC des del punt de vista tant de transmissió com de recepció, utilitzant bé configuracions amb una antena (SISO) o amb múltiples antenes (MIMO). En transmissions SISO, s'han optimitzat 1D-NUCs, per a un rang ampli de distintes SNR i diferents ordes de constel·lació. També s'ha investigat l'optimització de 2D-NUCs rotades. Encara que la complexitat no augmenta, el guany SNR d'estes constel·lacions no és significativa. El major guany per rotació s'obté per a baixos ordes de constel·lació i altes SNR. No obstant això, utilitzant tècniques multi-RF, el guany augmenta dràsticament ja que les components I i Q es transmeten en distints canals RF. En esta tesi, s'ha estudiat el guany multi-RF de les NUC, amb o sense rotació.
En el receptor, s'han identificat dos colls de botella diferents en la implementació. Primer, s'ha analitzat la complexitat en el receptor per a totes les constel·lacions considerades i, posteriorment, es proposen dos algoritmes per a reduir la complexitat amb 2D-NUCs. Ambdós algoritmes redueixen dràsticament el nombre de distàncies. A més, els dos poden combinar-se en un únic demapper. També s'ha explorat la quantització d'estes constel·lacions, ja que tant els valors LLR com les components I/Q es veuen modificats, comparant amb constel·lacions QAM tradicionals. A més, s'ha proposat un algoritme que es basa en l'optimització per a diferents nivells de quantització, per a una NUC concreta.
Igualment, s'ha investigat en detall l'ús de NUCs en MIMO. S'ha inclòs l'optimització en una sola o en dos antenes, l'ús d'un desbalanç de potència, factors de discriminació entre antenes receptores (XPD), o l'ús de distints demappers. Assumint distints valors, s'han obtingut noves constel·lacions multi-antena (MA-NUC) gràcies a un nou procés de re-optimització específic per a MIMO. En el receptor, s'ha modificat l'anàlisi de complexitat al demapper, la qual s'incrementa enormement amb l'ús de 2D-NUCs i sistemes MIMO. Com a alternativa, es proposa una solució basada en l'algoritme Soft-Fixed Sphere Decoding (SFSD) . El principal problema és que estos demappers no funcionen amb 2D-NUCs, ja que necessiten d'un pas addicional en què les components I i Q necessiten separar-se. El mètode proposat quantifica el símbol més pròxim utilitzan / Fuentes Muela, M. (2017). Non-Uniform Constellations for Next-Generation Digital Terrestrial Broadcast Systems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/84743
|
7 |
Advanced Layered Divsion Multiplexing Technologies for Next-Gen BroadcastGarro Crevillén, Eduardo 09 July 2018 (has links)
Tesis por compendio / Desde comienzos del siglo XXI, los sistemas de radiodifusión terrestre han sido culpados de un uso ineficiente del espectro asignado. Para aumentar la eficiencia espectral, los organismos de estandarización de TV digital comenzaron a desarrollar la evolución técnica de los sistemas de TDT de primera generación. Entre otros, uno de los objetivos principales de los sistemas de TDT de próxima generación (DVB-T2 y ATSC 3.0) es proporcionar simultáneamente servicios de TV a dispositivos móviles y fijos. El principal inconveniente de esta entrega simultánea son los diferentes requisitos de cada condición de recepción. Para abordar estas limitaciones, se han considerado diferentes técnicas de multiplexación. Mientras que DVB-T2 acomete la entrega simultánea de los dos servicios mediante TDM, ATSC 3.0 adoptó la Multiplexación por División en Capas (LDM). LDM puede superar a TDM y a FDM al aprovechar la relación de Protección de Error Desigual (UEP), ya que ambos servicios, llamados capas, utilizan todos los recursos de frecuencia y tiempo con diferentes niveles de potencia. En el lado del receptor, se distinguen dos implementaciones, de acuerdo con la capa a decodificar. Los receptores móviles solo están destinados a obtener la capa superior, conocida como Core Layer (CL). Para no aumentar su complejidad en comparación con los receptores de capa única, la capa inferior, conocida como Enhanced Layer (EL), es tratada como un ruido adicional en la decodificación. Los receptores fijos aumentan su complejidad, ya que deben realizar un proceso de Cancelación de Interferencia (SIC) sobre la CL para obtener la EL. Para limitar la complejidad adicional de los receptores fijos, las capas de LDM en ATSC 3.0 están configuradas con diferentes capacidades de corrección, pero comparten el resto de bloques de la capa física, incluido el TIL, el PP, el tamaño de FFT, y el GI.
Esta disertación investiga tecnologías avanzadas para optimizar el rendimiento de LDM. Primero se propone una optimización del proceso de demapeo para las dos capas de LDM. El algoritmo propuesto logra un aumento de capacidad, al tener en cuenta la forma de la EL en el proceso de demapeo de la CL. Sin embargo, el número de distancias Euclidianas a computar puede aumentar
significativamente, conduciendo no solo a receptores fijos más complejos, sino también a receptores móviles más complejos. A continuación, se determina la configuración de piloto ATSC 3.0 más adecuada para LDM. Teniendo en cuenta que las dos capas comparten el mismo PP, surge una contrapartida entre la densidad de pilotos (CL) y la redundancia sobre los datos (EL). A partir de los resultados de rendimiento, se recomienda el uso de un PP no muy denso, ya que ya han sido diseñados para hacer frente a ecos largos y altas velocidades. La amplitud piloto óptima depende del estimador de canal en los receptores (ej., se recomienda la amplitud mínima para una implementación Wiener, mientras que la máxima para una implementación FFT).
También se investiga la potencial transmisión conjunta de LDM con tres tecnologías avanzadas adoptadas en ATSC 3.0: las tecnologías de agregación MultiRF, los esquemas de MISO distribuido y los de MIMO colocalizado. Se estudian los potenciales casos de uso, los aspectos de implementación del transmisor y el receptor, y las ganancias de rendimiento de las configuraciones conjuntas para las dos capas de LDM. Las restricciones adicionales de combinar LDM con las tecnologías avanzadas se consideran admisibles, ya que las mayores demandas ya están contempladas en ATSC 3.0 (ej., una segunda cadena de recepción). Se obtienen ganancias significativas en condiciones de recepción peatonal gracias a la diversidad en frecuencia proporcionada por las tecnologías MultiRF. La conjunción de LDM con esquemas de MISO proporciona ganancias de rendimiento significativas en redes SFN para la capa fija con el esquema de Alamouti. / Since the beginning of the 21st century, terrestrial broadcasting systems have been blamed of an inefficient use of the allocated spectrum. To increase the spectral efficiency, digital television Standards Developing Organizations settled to develop the technical evolution of the first-generation DTT systems. Among others, a primary goal of next-generation DTT systems (DVB-T2 and ATSC 3.0) is to simultaneously provide TV services to mobile and fixed devices. The major drawback of this simultaneous delivery is the different requirement of each reception condition. To address these constraints different multiplexing techniques have been considered. While DVB-T2 fulfilled the simultaneous delivery of the two services by TDM, ATSC 3.0 adopted the LDM technology. LDM can outperform TDM and FDM by taking advantage of the UEP ratio, as both services, namely layers, utilize all the frequency and time resources with different power levels. At receiver side, two implementations are distinguished, according to the intended layer. Mobile receivers are only intended to obtain the upper layer, known as CL. In order not to increase their complexity compared to single layer receivers, the lower layer, known as EL is treated as an additional noise on the CL decoding. Fixed receivers, increase their complexity, as they should performed a SIC process on the CL for getting the EL. To limit the additional complexity of fixed receivers, the LDM layers in ATSC 3.0 are configured with different error correction capabilities, but share the rest of physical layer parameters, including the TIL, the PP, the FFT size, and the GI.
This dissertation investigates advanced technologies to optimize the LDM performance. A demapping optimization for the two LDM layers is first proposed. A capacity increase is achieved by the proposed algorithm, which takes into account the underlying layer shape in the demapping process. Nevertheless, the number of Euclidean distances to be computed can be significantly increased, contributing to not only more complex fixed receivers, but also more complex mobile receivers. Next, the most suitable ATSC 3.0 pilot configuration for LDM is determined. Considering the two layers share the same PP a trade-off between pilot density (CL) and data overhead (EL) arises. From the performance results, it is recommended the use of a not very dense PP, as they have been already designed to cope with long echoes and high speeds. The optimum pilot amplitude depends on the channel estimator at receivers (e.g. the minimum amplitude is recommended for a Wiener implementation, while the maximum for a FFT implementation).
The potential combination of LDM with three advanced technologies that have been adopted in ATSC 3.0 is also investigated: MultiRF technologies, distributed MISO schemes, and co-located MIMO schemes. The potential use cases, the transmitter and receiver implementations, and the performance gains of the joint configurations are studied for the two LDM layers. The additional constraints of combining LDM with the advanced technologies is considered admissible, as the greatest demands (e.g. a second receiving chain) are already contemplated in ATSC 3.0. Significant gains are found for the mobile layer at pedestrian reception conditions thanks to the frequency diversity provided by MultiRF technologies. The conjunction of LDM with distributed MISO schemes provides significant performance gains on SFNs for the fixed layer with Alamouti scheme. Last, considering the complexity in the mobile receivers and the CL performance, the recommended joint configuration is MISO in the CL and MIMO in the EL. / Des de començaments del segle XXI, els sistemes de radiodifusió terrestre han sigut culpats d'un ús ineficient de l'espectre assignat. Per a augmentar l'eficiència espectral, els organismes d'estandardització de TV digital van començar a desenvolupar l'evolució tècnica dels sistemes de TDT de primera generació. Entre altres, un dels objectius principals dels sistemes de TDT de pròxima generació (DVB-T2 i el ATSC 3.0) és proporcionar simultàniament serveis de TV a dispositius mòbils i fixos. El principal inconvenient d'aquest lliurament simultani són els diferents requisits de cada condició de recepció. Per a abordar aquestes limitacions, s'han considerat diferents tècniques de multiplexació. Mentre que DVB-T2 escomet el lliurament simultani dels dos serveis mitjançant TDM, ATSC 3.0 va adoptar la Multiplexació per Divisió en Capes (LDM). LDM pot superar a TDM i a FDM en aprofitar la relació de Protecció d'Error Desigual (UEP), ja que tots dos serveis, cridats capes, utilitzen tots els recursos de freqüència i temps amb diferents nivells de potència. En el costat del receptor, es distingeixen dues implementacions, d'acord amb la capa a decodificar. Els receptors mòbils solament estan destinats a obtenir la capa superior, coneguda com Core Layer (CL). Per a no augmentar la seua complexitat en comparació amb els receptors de capa única, la capa inferior, coneguda com Enhanced Layer (EL), és tractada com un soroll addicional en la decodificació. Els receptors fixos augmenten la seua complexitat, ja que han de realitzar un procés de Cancel·lació d'Interferència (SIC) sobre la CL per a obtenir l'EL. Per a limitar la complexitat addicional dels receptors fixos, les capes de LDM en ATSC 3.0 estan configurades amb diferents capacitats de correcció, però comparteixen la resta de blocs de la capa física, inclòs el TIL, el PP, la grandària de FFT i el GI.
Aquesta dissertació investiga tecnologies avançades per a optimitzar el rendiment de LDM. Primer es proposa una optimització del procés de demapeo per a les dues capes de LDM. L'algoritme proposat aconsegueix un augment de capacitat, en tenir en compte la forma de l'EL en el procés de demapeo de la CL. No obstant açò, el nombre de distàncies Euclidianes a computar pot augmentar significativament, conduint NO sols a receptors fixos més complexos, sinó també a receptors mòbils més complexos. A continuació, es determina la configuració de pilot ATSC 3.0 més adequada per a LDM. Tenint en compte que les dues capes comparteixen el mateix PP, es produeix una contrapartida entre la densitat de pilots (CL) i la redundància sobre les dades (EL). A partir dels resultats de rendiment, es recomana l'ús d'un PP no gaire dens, ja que ja han sigut dissenyats per a fer front a ecos llargs i altes velocitats. L'amplitud pilot òptima depèn de l'estimador de canal en els receptors (ex., es recomana l'amplitud mínima per a una implementació Wiener, mentre que la màxima per a una implementació FFT).
També s'investiga la potencial transmissió conjunta de LDM amb tres tecnologies avançades adoptades en ATSC 3.0: les tecnologies d'agregació de MultiRF, els esquemes de MISO distribuït i els de MIMO colocalitzat. S'estudien els potencials casos d'ús, els principals aspectes d'implementació del transmissor i el receptor, i els guanys de rendiment de les configuracions conjuntes per a les dues capes de LDM. Les restriccions addicionals de combinar LDM amb les tecnologies avançades es consideren admissibles, ja que les majors demandes ja estan contemplades en ATSC 3.0 (ex., una segona cadena de recepció). S'obtenen guanys significatius per a la capa mòbil en condicions de recepció per als vianants gràcies a la diversitat en freqüència proporcionada per les tecnologies MultiRF. La conjunció de LDM amb esquemes MISO distribuïts proporciona guanys de rendiment significatius en xarxes SFN per a la capa fixa amb l'esquema d'Alamouti. / Garro Crevillén, E. (2018). Advanced Layered Divsion Multiplexing Technologies for Next-Gen Broadcast [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/105559 / Compendio
|
Page generated in 0.0643 seconds