Spelling suggestions: "subject:"checkcif"" "subject:"checkbit""
111 |
Circuit Design of LDPC Decoder for IEEE 802.16e systemsWang, Jhih-hao 29 March 2010 (has links)
A circuit design of Low Density Parity Check (LDPC) decoder for IEEE 802.16e systems is with new overlapped method is proposed in this thesis. This circuit can be operated with 19 modes which are corresponding to block sizes of 576, ¡K, 2304. LDPC decoders can be implemented by using iterations with Variable Node and Check Node Processes. The hardware utilization ratio, which can be enhanced from 50% to 100% by using our proposed overlapped method, is better than traditional overlapped method. In [2], the traditional overlapped method utilization ratio just can be enhanced from 50% to 75% for IEEE 802.16e LDPC decoder with code rate 1/2. Under the same operating frequency, our proposed method can further increase 25% when compared with traditional overlapped method [2]. In this thesis, we also propose two circuit architectures to increase the operating frequency. First, we use a faster comparison circuit in our comparison unit [1]. Second, we use Carry Save Adder¡]CSA¡^method [8] to replace the common adder unit.
The circuit is carried out by TSMC CMOS 0.18£gm 1P6M process with chip area 3.11 x 3.08 mm2. In the gate level simulation, the output data rate of this circuit is above 78.4MHz, so the circuit can meet the requirement of IEEE 802.16e system.
|
112 |
A study on the relationship among service quality ,the customer relationship management ,customer satisfaction and customer loyaltyChuang, Kuo-yuan 20 June 2012 (has links)
The environment of the health care industry resulting in a considerable change in recent years by the NHI system uncertainty, rising health care costs, intra-industry competition, the rise of consumer awareness, as well as the patient's requirements to improve the quality of medical care and other factors impact. Therefore, health care providers have thinking business strategy in the future of medical institutions, and actively pursue a diversification of health services, extend the medical professional services related to health checks which is no constraints by NHI system, and at their own expense systemic health checks. Armed forces hospital is not only provide health check service to military personnel but also to provide the public at their own expense health check service. Many domestic and foreign literature shows that use of customer relationship management effectively can improve service quality. Therefore, how to use customer relationship management to enhance service quality of health check, to explore new customers (public) and retaining customers (military personnel), strengthen the competitiveness is an important issue facing the Armed forces hospitals.
In this research, the content of health check service quality are four dimensions to form by the environmental facilities, the health check process, personnel services and health management;the overall customer satisfaction for a single item; the customer loyalty is primarily to repurchase intentions and recommended four questions of. The structure of this research was constructed by "health check service quality", "customer satisfaction", " customer loyalty" the three dimensions together with background information on the dimensions of the formation; and distinguish between "health check service in current" and " health check services in the use of customer relationship management to adjust or increase the service measures " in two part. Explore the relationship and differences between the various dimensions.
This research took the example of an armed forces regional hospital. We use the convenient sample method to obtain questionnaires. The result of this research discovers that the demographic factors have no statistical difference with the health check service quality and the overall customer satisfaction; demographic factors of marital status and work patterns (military personnel) for partial questions of the customer loyalty have significant difference. There is moderate to high positive correlation between health check service quality and overall customer satisfaction. With the application of stepwise multiple regression analysis, health management in the health check service quality can efficiently predict overall satisfaction of the health check as a whole explanatory power and statistical-significance. Health check of the overall customer satisfaction and customer loyalty is positively related. "The overall satisfaction of health check services in the use of customer relationship management to adjust or increase the service measures" is higher than "the overall satisfaction of health check service in current" and has the remarkable difference. "The customer loyalty of health check services in the use of customer relationship management to adjust or increase the service measures" is higher than "the customer loyalty of health check service in current" and has the remarkable difference.
|
113 |
Hybrid Compressed-and-Forward Relaying Based on Compressive Sensing and Distributed LDPC CodesLin, Yu-Liang 26 July 2012 (has links)
Cooperative communication has been shown that it is an effective way to combat the outage caused by channel fading; that is, it provides the spatial diversity for communication. Except for amplify-and-forward (AF) and decode-and-forward (DF), compressed-and-forward (CF) is also an efficient forwarding strategy. In this thesis, we proposed a new CF scheme. In the existing CF protocol, the relay will switch to the DF mode when the source transmitted signal can be recovered by the relay completely; no further compression is made in this scheme. In our proposed, the relay will estimate if the codeword in a block is succeeded decoded, choose the corresponding forwarding methods with LDPC coding; those are based on joint source-channel coding or compressive sensing. At the decode side, a joint decoder with side information that performs sum-product algorithm (SPA) to decode the source message. Simulation results show that the proposed CF scheme can acquire the spatial diversity and outperform AF and DF schemes.
|
114 |
Design of Low-Cost Low-Density Parity-Check Code DecoderLiao, Wei-Chung 06 September 2005 (has links)
With the enormous growing applications of mobile communications, how to reduce the power dissipation of wireless communication has become an important issue that attracts much attention. One of the key techniques to achieve low power transmission is to develop a powerful channel coding scheme which can perform good error correcting capability even at low signal-to-noise ratio. In recent years, the trend of the error control code development is based on the iterative decoding algorithm which can lead to higher coding gain. Especially, the rediscovery of the low-density parity-check code ¡]LDPC¡^has become the most famous code after the introduction of Turbo code since it is the code closest to the well-know Shannon limit. However, since the block size used in LDPC is usually very large, and the parity matrix used in LDPC is quite random, the hardware implementation of LDPC has become very difficult. It may require a significant number of arithmetic units as well as very complex routing topology. Therefore, this thesis will address several design issues of LDPC decoder. First, under no SNR estimation condition, some simulation results of several LDPC architectures are provided and have shown that some architectures can achieve close performance to those with SNR estimation. Secondly, a novel message quantization method is proposed and applied in the design LDPC to reduce to the memory and table sizes as well as routing complexity. Finally, several early termination schemes for LDPC are considered, and it is found that up to 42% of bit node operation can be saved.
|
115 |
Ratchet : a prototype change-impact analysis tool with dynamic test selection for C++ codeAsenjo, Alejandro 17 June 2011 (has links)
Understanding the impact of changes made daily by development teams working on large-scale software products is a challenge faced by many organizations nowadays. Development efficiency can be severely affected by the increase in fragility that can creep in as products evolve and become more complex. Processes, such as gated check-in mechanisms, can be put in place to detect problematic changes before submission, but are usually limited in effectiveness due to their reliance on statically-defined sets of tests. Traditional change-impact analysis techniques can be combined with information gathered at run-time in order to create a system that can select tests for change verification. This report provides the high-level architecture of a system, named Ratchet, that combines static analysis of C++ programs, enabled by the reuse of the Clang compiler frontend, and code-coverage information gathered from automated test runs, in order to automatically select and schedule tests that exercise functions and methods possibly affected by the change. Prototype implementations of the static-analysis components of the system are provided, along with a basic evaluation of their capabilities through synthetic examples. / text
|
116 |
Κωδικοποίηση και διόρθωση λαθών σε μνήμες NAND πολλαπλών επιπέδωνΕυταξιάδης, Ευστράτιος, Μπίκας, Γεώργιος 09 October 2014 (has links)
Οι MLC NAND Flash μνήμες παίζουν πρωταγωνιστικό ρόλο για την αποθήκευση δε-
δομένων, καθώς έχουν μεγάλη αποθηκευτική ικανότητα λόγω της μεγάλης πυκνότητάς τους, χαμηλό κόστος και χαμηλή απαίτηση σε ισχύ. Για τους λόγους αυτούς, έγινε εφικτό από τους σκληρούς δίσκους οδήγησης (HDDs) πλέον έχουμε περάσει στην εποχή των Solid State Drives (SSDs) που αποτελούν ένα μεγάλο βήμα για την αποθήκευση δεδομένων αποδοτικά και αξιόπιστα. Βέβαια η παρουσία λαθών στις MLC NAND Flash μνήμες, λόγω φαινομένων όπως η γήρανση του υλικού καθιστά απαραίτητη την εφαρμογή κωδίκων διόρθωσης λαθών (ECC) ώστε να διατηρηθεί η αξιοπιστία σε επιθυμητά επίπεδα. Σκοπός λοιπόν αυτής της διπλωματικής είναι αρχικά η ανάπτυξη ενός παραμετροποιήσιμου μοντέλου MLC NAND Flash μνήμης για την εξομοίωση εμφάνισης λαθών. Στη συνέχεια η χρησιμοποίηση soft-decision Low Density Parity Check (LDPC) κωδίκων για
τη διόρθωση λαθών με τέτοι οτρόπο ώστε να παρατείνουμε το χρόνο ζωής της μνήμης και τελικά να υπολογίσουμε το Life Time Capacity που αποτελεί το συνολικό μέγεθος της πληροφορίας που μπορεί να αποθηκευθεί σε μία μνήμη καθ’όλη τη διάρκεια ζωής της. / --
|
117 |
Μελέτη της συμπεριφοράς αποκωδικοποιητών LDPC στην περιοχή του Error FloorΓιαννακοπούλου, Γεωργία 07 May 2015 (has links)
Σε διαγράμματα BER, με τα οποία αξιολογείται ένα σύστημα αποκωδικοποίησης, και σε χαμηλά επίπεδα θορύβου, παρατηρείται πολλές φορές η περιοχή Error Floor, όπου η απόδοση του αποκωδικοποιητή δε βελτιώνεται πλέον, καθώς μειώνεται ο θόρυβος. Με πραγματοποίηση εξομοίωσης σε software, το Error Floor συνήθως δεν είναι ορατό, κι έτσι κύριο ζητούμενο είναι η πρόβλεψη της συμπεριφοράς του αποκωδικοποιητή, αλλά και γενικότερα η βελτιστοποίηση της απόδοσής του σε αυτήν την περιοχή.
Στην παρούσα διπλωματική εργασία μελετάται η ανεπιτυχής αποκωδικοποίηση ορισμένων κωδικών λέξεων καθώς και ο μηχανισμός ενεργοποίησης των Trapping Sets, δηλαδή δομών, οι οποίες φαίνεται να είναι το κύριο αίτιο εμφάνισης του Error Floor. Xρησιμοποιείται το AWGN μοντέλο καναλιού και κώδικας με αραιό πίνακα ελέγχου ισοτιμίας (LDPC), ενώ οι εξομοιώσεις επαναληπτικών αποκωδικοποιήσεων πραγματοποιούνται σε επίπεδα (Layers), με αλγορίθμους ανταλλαγής μηνυμάτων (Message Passing). Αναλύονται προτεινόμενοι τροποποιημένοι αλγόριθμοι και μελετώνται οι επιπτώσεις του κβαντισμού των δεδομένων. Τέλος, προσδιορίζεται η επίδραση του θορύβου στην αποκωδικοποίηση και αναπτύσσεται ένα ημιαναλυτικό μοντέλο υπολογισμού της πιθανότητας ενεργοποίησης ενός Trapping Set και της πιθανότητας εμφάνισης σφάλματος κατά τη μετάδοση. / In BER plots, which are used in order to evaluate a decoding system, and at low-noise level, the Error Floor region is sometimes observed, where the decoder performance is no longer improved, as noise is reduced. When a simulation is executed using software, the Error Floor region is usually not visible, so the main goal is the prediction of the decoder's behavior, as well as the improvement in general of its performance in that particular region.
In this thesis, we study the conditions which result in a decoding failure for specific codewords and a Trapping Set activation. Trapping Sets are structures in a code, which seem to be the main cause of the Error Floor presence in BER plots. For the purpose of our study, we use the AWGN channel model and a linear block code with low density parity check matrix (LDPC), while iterative decoding simulations are executed by splitting the parity check matrix into layers (Layered Decoding) and by using Message Passing algorithms. We propose and analyze three new modified algorithms and we study the effects caused by data quantization. Finally, we determine the noise effects on the decoding procedure and we develop a semi-analytical model used for calculating the probability of a Trapping Set activation and for calculating the error probability during transmission.
|
118 |
Υλοποίηση επαναληπτικής αποκωδικοποίησης κωδικών LDPC για ασύρματους δέκτες MIMOΦρέσκος, Σταμάτιος 08 March 2010 (has links)
Στα πλαίσια αυτής της διπλωματικής εργασίας μελετήσαμε μεθόδους κωδικοποίησης με χρήση πινάκων ισοτιμίας μεγάλων διαστάσεων που έχουν χρησιμοποιηθεί και εφαρμοσθεί μέχρι τώρα σε προηγούμενες μελέτες. Επιλέξαμε τη σχεδίαση ενός αποκωδικοποιητή, που στηρίζεται στο WiMAX – 802.16e ΙΕΕΕ πρότυπο μετάδοσης και συγκεκριμένα με χρήση πομπού και δέκτη με περισσότερες από μία κεραίες. Παρουσιάζουμε, λοιπόν τη θεωρία που συσχετίζεται με το θέμα αυτό τόσο από την πλευρά της κωδικοποίησης όσο κι από την πλευρά της ασύρματης ΜΙΜΟ μετάδοσης και το πρότυπο WiMAX. Αναλύουμε κάθε τμήμα του συστήματός που προσομοιώνουμε και παραθέτουμε τα αποτελέσματα της προσομοίωσης. / -
|
119 |
Iterative Decoding Beyond Belief Propagation of Low-Density Parity-Check CodesPlanjery, Shiva Kumar January 2013 (has links)
The recent renaissance of one particular class of error-correcting codes called low-density parity-check (LDPC) codes has revolutionized the area of communications leading to the so-called field of modern coding theory. At the heart of this theory lies the fact that LDPC codes can be efficiently decoded by an iterative inference algorithm known as belief propagation (BP) which operates on a graphical model of a code. With BP decoding, LDPC codes are able to achieve an exceptionally good error-rate performance as they can asymptotically approach Shannon's capacity. However, LDPC codes under BP decoding suffer from the error floor phenomenon, an abrupt degradation in the error-rate performance of the code in the high signal-to-noise ratio region, which prevents the decoder from achieving very low error-rates. It arises mainly due to the sub-optimality of BP decoding on finite-length loopy graphs. Moreover, the effects of finite precision that stem from hardware realizations of BP decoding can further worsen the error floor phenomenon. Over the past few years, the error floor problem has emerged as one of the most important problems in coding theory with applications now requiring very low error rates and faster processing speeds. Further, addressing the error floor problem while taking finite precision into account in the decoder design has remained a challenge. In this dissertation, we introduce a new paradigm for finite precision iterative decoding of LDPC codes over the binary symmetric channel (BSC). These novel decoders, referred to as finite alphabet iterative decoders (FAIDs), are capable of surpassing the BP in the error floor region at a much lower complexity and memory usage than BP without any compromise in decoding latency. The messages propagated by FAIDs are not quantized probabilities or log-likelihoods, and the variable node update functions do not mimic the BP decoder. Rather, the update functions are simple maps designed to ensure a higher guaranteed error correction capability which improves the error floor performance. We provide a methodology for the design of FAIDs on column-weight-three codes. Using this methodology, we design 3-bit precision FAIDs that can surpass the BP (floating-point) in the error floor region on several column-weight-three codes of practical interest. While the proposed FAIDs are able to outperform the BP decoder with low precision, the analysis of FAIDs still proves to be a difficult issue. Furthermore, their achievable guaranteed error correction capability is still far from what is achievable by the optimal maximum-likelihood (ML) decoding. In order to address these two issues, we propose another novel class of decoders called decimation-enhanced FAIDs for LDPC codes. For this class of decoders, the technique of decimation is incorporated into the variable node update function of FAIDs. Decimation, which involves fixing certain bits of the code to a particular value during decoding, can significantly reduce the number of iterations required to correct a fixed number of errors while maintaining the good performance of a FAID, thereby making such decoders more amenable to analysis. We illustrate this for 3-bit precision FAIDs on column-weight-three codes and provide insights into the analysis of such decoders. We also show how decimation can be used adaptively to further enhance the guaranteed error correction capability of FAIDs that are already good on a given code. The new adaptive decimation scheme proposed has marginally added complexity but can significantly increase the slope of the error floor in the error-rate performance of a particular FAID. On certain high-rate column-weight-three codes of practical interest, we show that adaptive decimation-enhanced FAIDs can achieve a guaranteed error-correction capability that is close to the theoretical limit achieved by ML decoding.
|
120 |
The adult female bogus check writerWard, Evelyn Dawn, 1936- January 1972 (has links)
No description available.
|
Page generated in 0.0413 seconds