21 |
Activation of the carbonaceous material from the pyrolysis of waste tires for wastewater treatment.Malise, Lucky 07 1900 (has links)
M.Tech. (Department of Chemical Engineering, Faculty of Engineering and Technology), Vaal University of Technology. / The generation of waste tires is one of the most serious environmental problems in the modern world due to the increased use of auto mobiles all over the world. Currently there is a problem with the disposal of waste tires generated since there are strict regulations concerning their disposal through landfill sites. Therefore, there is a need to find ways of disposing these waste tires which pose serious health and environmental problem. The pyrolysis of the waste tires has been recognised as the most promising method to dispose the waste tires because it can reduce the weight of the waste tires to 10% of its original weight and produce products such as pyrolysis oil, pyrolysis char, and pyrolysis char. These products can be further processed to produce value added products. The char produced from the pyrolysis of waste tires can be further activated to produce activated carbon.
This study is based on the chemical activation of waste tire pyrolysis char to produce activated carbon for the removal of lead ions from aqueous solution. This was done by impregnating the waste tire pyrolysis char with Potassium hydroxide and activating it inside a tube furnace under inert conditions to produce waste tire activated carbon. Adsorbent characterisation techniques (SEM, FTIR, TGA, XRF, XRD, BET, and Proximate analysis) were performed on the waste tire pyrolysis char and the activated carbon produced to make a comparison between the two samples. The results showed that the waste tire activated carbon produced has better physical and chemical properties compared to the raw waste tire pyrolysis char.
Adsorption results revealed that waste tire activated carbon achieves higher removal percentages of lead ions from aqueous solution compared to waste tire pyrolysis char. The results also showed the effect of various process variables on the adsorption process. Adsorption isotherms, kinetics, and thermodynamics were also studied. The adsorption of lead ions agreed with the Freundlich isotherm model for both the waste tire pyrolysis char and waste tire activated carbon. In terms of adsorption kinetics, the experimental data provided best fits for the pseudo-first order kinetic model for both the waste tire pyrolysis char and the waste tire activated carbon. The adsorption thermodynamics study revealed that the process is an exothermic process and spontaneous in nature.
Response surface methodology was used to determine the combined effect of process variables on the adsorption of lead ions onto waste tire activated carbon and to optimise the process using numerical optimisation. The optimum conditions were found to be adsorbent dosage = 1g/100ml, pH = 7, contact time = 115.2 min, initial meta concentration = 100 mg/l, and temperature = 25°C to achieve a maximum adsorption capacity of 93.176 mg/l.
|
22 |
Activated carbon from renewable resources:carbonization, activation and useBergna, D. (Davide) 19 November 2019 (has links)
Abstract
Biomass is the most abundant renewable material present on Earth and has been widely used e.g. in energy production. Recently, new applications for biomass utilization have been developed, e.g. the use of biomass as a raw material for synthesizing new chemicals. This research aimed to produce activated carbon (AC) from waste wood-based materials and peat through carbonization followed by physical or chemical activation. Physical steam activation and chemical activation generate the porosity in AC after the carbonization. The desired properties of AC (porosity, pore size distribution, surface functionality) are dependent on the application in which AC is used.
The first part of the research focused on setting up the carbonization and activation device. The most important variables affecting carbonization and activation and the AC properties were studied. The process parameters were optimized through the design of experiments (DOE). The results showed that in the physical activation, the most important variables affecting the characteristics of AC are the holding time, temperature, and the steam feed. Consequently, a model for tailoring the microporosity or mesoporosity of AC and maximizing the yield is proposed.
The second part of the research focused on chemical activation using zinc chloride. The aim was to study the effect of activation variables on the yield and properties of AC. Finally, the use of AC as an adsorbent was studied. Especially, the applicability of birch sawdust based activated carbon on the removal of dyes, zinc metal, nitrate, phosphate, and sulfate ions was evaluated. Based on the results, a difference was shown between one and two step process for carbonization and activation, and a single-step process was suggested to maximize the quality of AC. / Tiivistelmä
Biomassa on maapallon eniten saatavilla olevaa uusiutuvaa materiaalia, jota on hyödynnetty jo pitkään mm. energiantuotannossa. Viime aikoina uusia biomassan käyttökohteita on kehitetty laajalti, kuten esimerkiksi uusien kemikaalien valmistukseen. Tässä tutkimuksessa puupohjaista jätebiomassaa ja turvetta hyödynnetään fysikaalisesti ja kemiallisesti aktivoidun aktiivihiilen valmistuksessa. Fysikaalinen höyryaktivointi ja kemiallinen aktivointi lisäävät aktiivihiilen huokoisuutta hiilestyksen jälkeen. Aktiivihiilen halutut ominaisuudet (huokoskokojakauma, pinnan toiminnalliset ryhmät) määräytyvät käyttökohteen mukaan.
Tutkimuksen ensimmäisessä vaiheessa keskityttiin hidas pyrolyysilaitteiston ja aktivointilaitteiston rakentamiseen sekä hiilestyksen ja aktivoinnin kannalta keskeisimpien muuttujien tutkimiseen. Prosessimuuttujien vaikutusten tarkastelussa ja optimoinnissa hyödynnettiin koesuunnitteluohjelmaa. Tulosten perusteella todettiin, että fysikaalisessa aktivoinnissa olennaisimmat muuttujat olivat lämpötila, pitoaika sekä höyrysyöttö. Tämän pohjalta esitettiin malli aktiivihiilen mikro- ja mesohuokoisuuden muokkaamiseksi ja saannon maksimoimiseksi.
Tutkimuksen toisessa vaiheessa tutkittiin kemiallista aktivointia hyödyntämällä sinkkikloridia aktivointikemikaalina. Tavoitteena oli selvittää eri aktivointimuuttujien vaikutusta saantoon ja aktiivihiilen laatuun. Tutkimuksen viimeisessä vaiheessa tutkittiin valmistettujen aktiivihiilien käyttöä adsorbenttina. Erityisesti tutkittiin koivupurusta valmistetun aktiivihiilen soveltuvuutta väriaineiden, metallien ja anionien sidontaan. Tutkimuksen keskeisenä tuloksena voitiin osoittaa merkittävä ero yksi- ja kaksivaiheisen hiilestyksen ja aktivoinnin välillä, ja ehdotettiin yksivaiheista prosessia hiililaadun optimoimiseksi. / Sommario
La biomassa è il materiale rinnovabile più abbondante presente sulla Terra ed è stata intensamente usata e.g. nella produzione di energia. Recentemente sono state sviluppate nuove applicazioni per la biomassa, ad esempio come materiale di base per sintetizzare nuovi prodotti chimici. Lo scopo di questa ricerca è produrre carbone attivo (CA) attraverso attivazione fisica e chimica da materiali legnosi di scarto come segatura, cippato e torba. L’attivazione fisica e l’attivazione chimica, creano la porosità nel CA dopo la carbonizzazione. Il prodotto finale può essere usato in differenti applicazioni in base a diversi fattori tra cui la distribuzione della porosità e la tipologia dei gruppi funzionali presenti sulla superficie.
La prima fase della ricerca è stata dedicata alla progettazione e installazione dell’hardware necessario per l’attivazione e nell’individuazione dei parametri di processo più importanti. I parametri di processo sono stati ottimizzati attraverso il design of experiments (DOE) e sono state considerate le differenti variabili che interagiscono nella formazione del CA. I risultati hanno mostrato che i parametri di processo più importanti che influiscono sulle caratteristiche del CA sono il tempo, la temperatura di attivazione e la quantità di vapore iniettato nel reattore. È stato proposto un modello per progettare CA microporoso o mesoporoso con massa finale massimizzata. La seconda parte della ricerca è stata incentrata sull’attivazione chimica con cloruro di zinco. Lo scopo é stato studiare l’effetto delle variabili di attivazione su massa finale e proprietà del carbone attivo. Infine, è stata studiato il CA come adsorbente. In particolare è stata considerata l’applicabilità del CA da segatura di betulla per la rimozione di coloranti, zinco metallico, ioni di nitrato, fosfato e solfato. In base a questi risultati, una differenza é stata evidenziata tra il processo di carbonizzazione e attivazione a uno o due stadi, ed il processo a singolo stadio è stato proposto per massimizzare la qualità del CA.
|
23 |
Eliminación de compuestos causantes de olores mediante adsorbentes/catalizadores obtenidos a partir de lodos de depuradoraRos Sans, Anna 16 December 2006 (has links)
El aumento de la cantidad de lodos y las dificultades inherentes a su aplicación agrícola y/o disposición en vertederos, hace necesario encontrar nuevas alternativas para su gestión. A nivel europeo, hoy en día se tiende hacia la aplicación de tratamientos térmicos (incineración, pirólisis y gasificación) que permiten una valoración energética de los lodos, si bien generan un residuo sólido que sigue siendo necesario gestionar. El problema medioambiental provocado por (malos) olores resulta difícil de abordar de una manera genérica, teniendo en consideración la propia naturaleza del olor y sus posibles causas. Los olores en las EDARs son provocados básicamente por la degradación de la materia orgánica en condiciones anaeróbicas y se detectan en todas las operaciones unitarias en diferentes niveles de concentración. Esta tesis incidiendo en ambos aspectos, tiene por objeto investigar la valorización de lodos como materiales precursores de adsorbentes/ catalizadores para la eliminación de olores en el entorno de las EDARs, maximizando la reutilización de los lodos.Para la realización de los experimentos se han seleccionado lodos procedentes de tres EDARs situadas en la región de Girona (SC, SB, SL) que difieren en cuanto al tratamiento de los lodos. Ambas muestras han sido caracterizadas con el fin de determinar las diferencias más importantes en los lodos de partida. Los parámetros de caracterización incluyen el análisis de composición química (análisis elemental e inmediato, determinación contenido en cenizas, medida pH, DRX, FT-IR, SEM / EDX) así como análisis de superficie (adsorción de N2 y CO2). En primer lugar los lodos caracterizados han sido sometidos a diferentes tratamientos térmicos de gasificación y pirólisis y los adsorbentes/ catalizadores obtenidos se han probado como adsorbentes para la eliminación de H2S. Como consecuencia de este estudio, se ha desechado el uso de uno de lodos (SC) puesto que se obtenían resultados muy similares a (SB), a continuación el estudio se centró en el lodo de SL. Con este objetivo se han preparado 12 muestras 6 de ellas pirolizadas y 6 gasificadas en el rango de temperaturas que comprende 600-1100 ºC. Posteriormente las muestras han sido caracterizadas y se ha determinado la capacidad de eliminación (x/M) del H2S. Los resultados muestran que hemos sido capaces de obtener unos materiales que si bien, presentan un bajo desarrollo de porosidad dan lugar a valores de capacidades de eliminación elevados y comparables a carbones y materiales adsorbentes comerciales (Centaur, Sorbalit). Las elevadas eficiencias de eliminación se atribuyen básicamente a la presencia de especies catalíticamente activas tales como los óxidos mixtos de calcio y hierro determinados por DRX en las muestras tratadas térmicamente. El segundo bloque de resultados se centra la mejora de las propiedades texturales de estos materiales adsorbentes. Con este objetivo se llevaron acabo procesos de activación física con CO2 y química con H3PO4 e hidróxidos alcalinos (NaOH y KOH), que hasta el momento no se había probado con este tipo de precursores. Los resultados indican que la activación física (CO2) y química (H3PO4) no son unos buenos métodos para la obtención de adsorbentes altamente porosos con este tipo de materia prima bajo las condiciones probadas, sin embargo la activación con hidróxidos alcalinos da lugar a materiales adsorbentes con superficies específicas de hasta 1600 m2g-1. En el caso de la activación con hidróxidos, tanto el incremento de la relación agente activante/ precursor como el incremento de la temperatura producen un descenso del rendimiento, al mismo tiempo que incrementan el valor de SBET.Los materiales resultantes de la activación con hidróxidos alcalinos se han probado como adsorbentes/ catalizadores para la eliminación de H2S. Los resultados indican que un incremento del área superficial no es indicativo de un aumento de la capacidad de eliminación dada la naturaleza ácida de estos materiales obtenidos. Con el fin de contrarrestar el efecto ácido de estos materiales se han realizado los mismos ensayos añadiendo NaOH al lecho de reacción llegando a valores de x/M de hasta 450 mgg-1. Posteriormente también se han realizado ensayos de eliminación de NH3 con algunas de estas muestras, y los resultados obtenidos de x/M son del orden de carbones activados comerciales. Los materiales adsorbentes obtenidos tras la activación con hidróxidos alcalinos se convierten en materiales muy atractivos para ser utilizados como adsorbentes/ catalizadores de múltiples contaminantes (COVs, Hg...). / During the last years there has been an increase in the number of wastewater treatment plants arising after the implementation of regulatory policies focused on sustainable development of contemporary societies. A large quantity of sewage sludge is produced and in addition, some traditional disposal routes are coming under pressure and others are being phased out. Therefore, it is necessary to seek cost-effective and innovate solutions to the problem incurred by sewage sludge disposal. Nowadays, the tendency in Europe is to use this residue to obtain energy by thermal treatments, such as incineration, pyrolysis and gasification, though during this treatment a residue that needs to be disposed is generated.Furthermore, the environmental problems prompted by odors are difficult to solve take considering the different origin and reasons for these bad smells. Bad smell in waste water treatment plants is produced basically by organic matter degradation. This thesis takes into account these two aspects. The aim of this work focuses on the revalorization of sewage sludge to obtain / prepare adsorbents / catalysts from various sewage-based precursors and their application in H2S and in NH3 abatement at ambient temperature. These two latter compounds are paradigmatic in odor related problems.The sewage sludge samples used in this study were obtained from three Spanish WWTPs located in Girona (SC, SB, SL). The influent of these selected facilities is mainly of domestic origin and differs in sludge treatment schemes. A detailed characterization of the solids under consideration is carried out, as a purpose to define the main differences. The techniques used to characterize precursors include chemical characterization (elemental analysis, ash content, pH determination, DRX, FT-IR, SEM / EDX), as well as their porosity characterization (physical adsorption of N2 and CO2).In the first part of the study we focused on dried samples that were subjected to different thermal treatments such as pyrolysis and gasification at different temperatures. The adsorbents/catalysts obtained were used for H2S removal. Afterwards, 12 samples were prepared from SL, 6 of them gasified between 600 - 1100 ºC and 6 pyrolysed at the same temperatures. The samples were characterized and used as an adsorbents for H2S removal. The results shown that we were able to obtain adsorbents with high removal efficiencies despite their low porosity development. These adsorption capacities values (x/M) are in the same range or even higher than x/M values from commercial active carbons (Centaur, Sorbalit). These high x/M values have been prompted to catalytic species such as dicalcium ferrite, identified by XRD.The second part of the study was focused on the preparation of adsorbents from these sewage sludge-based precursors (SB, SL) using different activation processes. Specifically, physical activation with CO2, H3PO4 activation and alkaline hydroxide activation were explored. It is worth noticing that, as far as we know, there are no previous studies in the literature dealing with the activation of sewage sludge by alkaline hydroxides (NaOH or KOH), whereas CO2 and H3PO4 have been scarcely used for the activation of this precursor. The results of the textural characterization of the materials prepared from physical activation by CO2 and chemical activation by H3PO4 show that, these precursors are not a suitable for the preparation of adsorbents by these two methods. Nevertheless, chemical activation by alkaline hydroxides can be a suitable method to develop porosity and surface areas higher than 1600 m2g-1 can be obtained from both sewage sludge precursors (SB, SL). An increase in the hydroxide: precursor ratio leads to an enhancement of the adsorption capacity of the adsorbents. The resultant materials were tested as adsorbents/catalyst for H2S abatement. The results shown that we are been able to obtain adsorbents from sludge-based materials with high surface areas but with relatively low adsorption capacities as a consequence of its acidic nature. NaOH was added to the adsorption bed to counteract the acidic nature of these materials. The x/M values obtained are higher than 450 mgg-1. In addition, some of these materials were used for NH3 removal being the results obtained comparable to those for commercial activated carbons x/M values, tested under similar experimental conditions. These "new" activated materials can be used as adsorbents for many environmental applications such as VOC, Hg removal, etc.
|
Page generated in 0.1279 seconds