111 |
Novel organometallic precursors for the Chemical Vapor Deposition of metal thin filmsRivers, Joseph Henry 07 December 2010 (has links)
With the growing demand for miniaturization of devices and for new materials with useful properties, the use of Chemical Vapor Deposition (CVD) for the manufacture of thin films is receiving growing attention. The synthesis of potentially volatile metal complexes and investigation of their use as CVD precursors is an important part of this process. The research presented addresses several major areas of this process, (i) the identification and synthesis of ligands which can impart volatility to a metal complex, (ii) the synthesis, characterization, and assessment of volatility of metal complexes containing these ligands, and (iii) the full materials characterization of thin films grown with these complexes. The use of trimethylphosphine, bis(trifluoromethyl)pyrazolate, and bis(trifluoromethyl)pyrrolyl ligands have been successfully used to synthesize volatile new complexes of cobalt, rhodium, and nickel, some of which show promise for use as potential CVD precursors. / text
|
112 |
Deposition of epitaxial Si/Si-Ge/Ge and novel high-K gate dielectrics using remote plasma chemical vapor depositionChen, Xiao, 1972- 29 June 2011 (has links)
Not available / text
|
113 |
Theoretical Routes for c-BN Thin Film GrowthKarlsson, Johan January 2013 (has links)
Cubic boron nitride (c-BN) has been in focus for several years due to its interesting properties. The possibility for large area chemical vapor deposition (CVD) is a requirement for the realization of these different properties in various applications. Unfortunately, there are at present severe problems in the CVD growth of c-BN. The purpose with this research project has been to theoretically investigate, using density functional theory (DFT) calculations, the possibility for a layer-by-layer CVD growth of c-BN. The results, in addition with experimental work by Zhang et al.57, indicate that plasma-enhanced atomic layer deposition (PEALD), using a BF3-H2-NH3-F2 pulse cycle and a diamond substrate, is a promising method for deposition of c-BN films. The gaseous species will decompose in the plasma and form BFx, H, NHx, and F species (x = 0, 1, 2, 3). The H and F radicals will uphold the cubic structure by completely hydrogenate, or fluorinate, the growing surface. Surface radical sites will appear during the growth process as a result of atomic H, or F, abstraction reactions. However, introduction of energy (e.g., ionic bombardment) is probably necessary to promote removal of H from the surface. The addition of NHx growth species (x = 0, 1, 2) to the B radical sites, and BFx growth species (x = 0, 1, 2) to N radical sites, will then result in a continuous growth of c-BN.
|
114 |
Silicon Refining Through Chemical Vapor DepositionLI, Mark Xiang 03 January 2011 (has links)
Currently the cost of solar grade silicon accounts for approximately one third of the total solar cell cost, therefore a new silicon refining process is being proposed with the goal of lowering the cost of producing solar grade silicon.
In this new process, Si-Cu alloys were used as the silicon source. One to one molar ratio H2-HCl gas mixtures were used as transport agents to extract Si out from the Si-Cu alloy at about 300-700oC, with following reaction taking place:
Si+3HCl(g)=HSiCl3(g)+H2(g)
While at about 1000-1300oC, pure Si deposits onto a hot silicon rod according to:
Si+3HCl(g)=HSiCl3(g)+H2(g)
The role of the copper in the alloy was to trap impurities in the Si and catalyze the gas solid reaction. A study on determining the rate limiting step and impurity behavior was done. A possible silicon extraction reaction mechanism was also addressed.
|
115 |
Silicon Refining Through Chemical Vapor DepositionLI, Mark Xiang 03 January 2011 (has links)
Currently the cost of solar grade silicon accounts for approximately one third of the total solar cell cost, therefore a new silicon refining process is being proposed with the goal of lowering the cost of producing solar grade silicon.
In this new process, Si-Cu alloys were used as the silicon source. One to one molar ratio H2-HCl gas mixtures were used as transport agents to extract Si out from the Si-Cu alloy at about 300-700oC, with following reaction taking place:
Si+3HCl(g)=HSiCl3(g)+H2(g)
While at about 1000-1300oC, pure Si deposits onto a hot silicon rod according to:
Si+3HCl(g)=HSiCl3(g)+H2(g)
The role of the copper in the alloy was to trap impurities in the Si and catalyze the gas solid reaction. A study on determining the rate limiting step and impurity behavior was done. A possible silicon extraction reaction mechanism was also addressed.
|
116 |
Level set model of microstructure evolution in the chemical vapor infiltration processWang, Xuelei 12 1900 (has links)
No description available.
|
117 |
Studies of diamond film formationNewson, Pamela Lynn 12 1900 (has links)
No description available.
|
118 |
Synthetic, mechanistic, structural, and dynamic NMR investigations of zinc bis(amide) compoundsGaul, David Allen 05 1900 (has links)
No description available.
|
119 |
Mechanistic analysis of the thermally induced decomposition of certain metal beta-diketonate precursors for chemical vapor deposition of electronic materialsObi-Johnson, Bettie Jeanne 05 1900 (has links)
No description available.
|
120 |
Patterning etch masks via the "Grafting-from polymerizationChen, Xiao Hua 05 1900 (has links)
No description available.
|
Page generated in 0.0609 seconds