191 |
Glycogen Synthase Kinase 3 Influences Cell Motility and Chemotaxis by Regulating Phosphatidylinositol 3 Kinase Localization in Dictyostelium discoideumSun, Tong 06 March 2013 (has links)
Glycogen Synthase Kinase 3 (GSK3), a serine/threonine kinase initially characterized in the context of glycogen metabolism, has been repeatedly realized as a multitasking protein that can regulate numerous cellular events in both metazoa and protozoa. I recently found GSK3 plays a role in regulating chemotaxis, a guided cell movement in response to an external chemical gradient, in one of the best studied model systems for chemotaxis - Dictyostelium discoideum.
It was initially found that comparing to wild type cells, gsk3- cells showed aberrant chemotaxis with a significant decrease in both speed and chemotactic indices. In Dictyostelium, phosphatidylinositol 3,4,5-triphosphate (PIP3) signaling is one of the best characterized pathways that regulate chemotaxis. Molecular analysis uncovered that gsk3- cells suffer from high basal level of PIP3, the product of PI3K. Upon chemoattractant cAMP stimulation, wild type cells displayed a transient increase in the level of PIP3. In contrast, gsk3- cells exhibited neither significant increase nor adaptation. On the other hand, no aberrant dynamic of phosphatase and tensin homolog (PTEN), which antagonizes PI3K function, was observed. Upon membrane localization of PI3K, PI3K become activated by Ras, which will in turn further facilitate membrane localization of PI3K in an F-Actin dependent manner. The gsk3- cells treated with F-Actin inhibitor Latrunculin-A showed no significant difference in the PIP3 level.
I also showed GSK3 affected the phosphorylation level of the localization domain of PI3K1 (PI3K1-LD). PI3K1-LD proteins from gsk3- cells displayed less phosphorylation on serine residues compared to that from wild type cells. When the potential GSK3 phosphorylation sites of PI3K1-LD were substituted with aspartic acids (Phosphomimetic substitution), its membrane localization was suppressed in gsk3- cells. When these serine residues of PI3K1-LD were substituted with alanine, aberrantly high level of membrane localization of the PI3K1-LD was monitored in wild type cells. Wild type, phosphomimetic, and alanine substitution of PI3K1-LD fused with GFP proteins also displayed identical localization behavior as suggested by the cell fraction studies. Lastly, I identified that all three potential GSK3 phosphorylation sites on PI3K1-LD could be phosphorylated in vitro by GSK3.
|
192 |
Clostridioides difficile: Analysis on Single Cell Motility and on Antibiotic ResistanceSchwanbeck, Julian 24 October 2021 (has links)
No description available.
|
193 |
Modeling and simulation of transport during acupuncture / Modélisation et simulation de transport pendant l'acupunctureDeleuze, Yannick 22 September 2015 (has links)
L’objectif de cette thèse est d’appréhender la complexité des mécanismes biologiques de l’acupuncture afin de construire un modèle mathématique multi-échelle. Ce modèle est étudié théoriquement et numériquement. L’acupuncture est une des plus vielles pratiques de l’histoire de la médecine et une partie intégrante de la médecine traditionnelle chinoise. Dans sa pratique la plus classique, une ou plusieurs aiguilles sont placées à des endroits spécifiques, nommés points d’acupuncture. L’aiguille est ensuite manipulée en utilisant des mouvements de rotation et de translation de façon à stimuler le point d’acupuncture. Les effets cliniques de l’acupuncture pourraient être le résultat d’effet de cascades de réactions produites par les interactions entre l’hypoderme et les systèmes nerveux, endocrinien et immunitaire. Le travail présenté s’articule sur la modélisation de l’insertion d’une aiguille dans le tissu conjonctif de l’hypoderme. Un modèle d’écoulement en milieu poreux du liquide interstitiel de l’hypoderme a permis d’étudier numériquement les composantes de contrainte qui agissent sur les récepteurs à la surface des cellules du tissu et notamment des mastocytes.Un modèle mathématique de la réponse chimiotactique des mastocytes à une contrainte physique créée par le traitement d’acupuncture est développé. Ce modèle prend en compte les mécanismes de signalisation cellulaire. La contrainte physique induit la libération rapide et continue, grâce au recrutement chimotactique de mastocytes, d’attractants et de médiateurs chimiques. Le modèle est basé sur le modèle de chimiotaxie de type Keller-Segel. / The objective of this thesis is to comprehend the complexity of the underlying basis of acupuncture. Acupuncture needling is investigated in order to establish a multiscale model that takes into account the complexity of biology but is mathematically simple enough to run simulations.Acupuncture is one of the oldest practices in the history of medicine and is the core of Traditional Chinese Medicine. Once needles are inserted in the right locations, called acupoints, they are manipulated via manual needling to stimulate the acupoint. The physiological reactions of acupuncture needling lead to therapeutic effects which can be explained by a series of interactions between the skin and the nervous, the endocrine, and the immune systems.In the present work, the thrusting and lifting of an acupuncture needle inserted in subcutaneous connective tissue is modeled. A porous media model is used to run simulations and compute the pressure and shear stress affecting the organization of fibers and of isolated cells in their matrix. A mathematical model was conceived to take into account cell signaling. There is ample evidence that needle manipulation in acupuncture can cause degranulation of mastocytes directly through a physical stress to occur. Activated mastocytes rapidly release granules containing chemical mediators. These chemical mediators play a key role recruiting mastocytes in their environment and are known to affect the excitability of nerve endings as well as local microcirculation permeability and size for the appropriate transfer of long-term acting endocrine signals. The process is sustained by the recruitment of mastocytes through chemotaxis.
|
194 |
Entwicklung von Verfahren zur Erzeugung anisotroper Mikrostrukturen und VEGF-Gradienten auf Collagen Typ I-Scaffolds für ZellkulturanwendungenBerger, Steffen 25 August 2021 (has links)
Die Versorgung mit Nährstoffen und Sauerstoff in artifiziellen, 3D Scaffolds für das Tissue Engineering ist Grundvoraussetzung für die Viabilität darin kultivierter Zellen. Die Kombination aus definierter Architektur und biomimetischer Zusammensetzung ist dabei entscheidend, sodass neben dem Stofftransport auch die Adhäsion, Proliferation, Migration und Morphologie von Zellen gesteuert werden können. Die Verwendung von Komponenten der nativen Extrazellulären Matrix, wie Collagen Typ I (COL I), als Scaffold-Material wird dafür als optimal angesehen. Jedoch stellt die Gestaltung der Architektur und Bereitstellung instruktiver Elemente zur Steuerung der Zellverhaltens bei COL I-basierten Scaffolds, aufgrund der mechanischen und biochemischen Eigenschaften des COL I, besondere Ansprüche an die Bearbeitungsverfahren. Ziel dieser Arbeit war es daher, Verfahren zur Ausstattung von modularisierbaren, COL I-basierten Membranen mit einer instruktiven biochemischen Zusammensetzung, Mikroarchitekturen als Basis für ein initiales vaskuläres System und Gradienten des Vascular Endothelial Growth Factors (VEGF) zu entwickeln. Diese Scaffolds sollten anschließend hinsichtlich der Beeinflussung des Wachstums, der Orientierung und der gerichteten Migration von
humanen Endothelzellen aus der Nabelschnurvene (HUVEC) charakterisiert werden.
COL I-Scaffolds konnten durch Plastic Compression in Membranform hergestellt und mit Fibronectin (FN) und Hyaluronsäure (HA, mit hohem Molekulargewicht) ausgestattet werden. Die Inkorporation von FN erhöhte die HUVEC-Proliferation, während die Proliferationsrate bei der verwendeten HA konstant blieb. Anisotrope Mikrostrukturen als Basis für ein vaskuläres System und zur HUVECOrientierung wurden durch einen 3-stufigen Prozess auf den COL I-Membranen erzeugt. Dabei wurde die Mikrostrukturübertragung durch mikrostrukturierte Polystyren-Stempel in einem Druckumformprozess realisiert. Die erhaltenen Mikrogräben mit Breiten von 10-40 µm beeinflussten die Orientierung der HUVEC deutlich. Für die Erzeugung von VEGF-Gradienten zur Steuerung der gerichteten Migration von HUVEC wurde ein Immersionsverfahren mit Hilfe der Modellproteine Bovines Serumalbumin
und Hyaluronidase entwickelt. Dieses ermöglichte die Erzeugung eines linearen, graduellen Konzentrationsverlaufs der Modellproteine auf der Membranoberfläche. Der entwickelte Prozess konnte auf VEGF mit einem minimalen Gradientenprofil von 3,8-11,8 pg/mm² nach Immersion in 100 ng/mL VEGF-Lösung übertragen werden. Erste Versuche zur Induktion der HUVEC-Migration zeigten, dass ein erfolgreiches Gradientenprofil jedoch noch gefunden werden muss. Die erzeugten COL I-Membranen bilden eine gute Ausgangsposition für die Bereitstellung modularer, biomimetischer Tissue-Engineering-Scaffolds, mit initialer Vaskularisierung und zellinstruktiven Elementen. Außerdem besitzen sie das Potential, durch eine Vielzahl von Bio-Engineering-Methoden modifiziert und biochemisch den Anforderungen an das zelluläre Mikromilieu ausgestattet zu werden. / The supply of nutrients and oxygen in artificial, three-dimensional scaffolds for tissue engineering is a basic prerequisite for the viability of cells cultivated therein. The combination of defined architecture and biomimetic composition are crucial in this context, so that besides the metabolic transport, the adhesion, proliferation, migration and morphology of cells can also be controlled. The use of native extracellular matrix components, such as collagen type I (COL I), as scaffold material is considered optimal for this purpose. However, designing the architecture and providing instructive elements to control cell behavior in COL I-based scaffolds poses special challenges to processing methods due to the mechanical and biochemical properties of COL I. Therefore, the aim of this work was to develop basic procedures to equip modularizable COL I-based membranes with instructive biochemical composition, microarchitectures as initial vascular system, and vascular endothelial growth factor (VEGF) gradients and to characterize the obtained scaffolds with respect to influencing human umbilical vein endothelial cell (HUVEC) growth, orientation, and migration.
It was shown that COL I scaffolds can be prepared by Plastic Compression in membrane form and equipped with fibronectin (FN) and hyaluronic acid (HA, with high molecular weight). Incorporation of FN increased HUVEC proliferation, whereas the proliferation rate remained constant with the HA used. Anisotropic microstructures as a basis for a vascular system and for HUVEC orientation were generated by a 3-step process on the COL I membranes. In this process, the microstructure transfer was realized by microstructured polystyrene stamps in a pressure forming process. The obtained microtrenches with widths of 10-40 µm significantly affected the orientation of HUVEC. For the generation of VEGF gradients to control the directional migration of HUVEC, an immersion technique was developed using the model proteins bovine serum albumin and hyaluronidase. This allowed the generation of a linear, gradual concentration gradient of the model proteins on the membrane surface. The developed process could be applied to VEGF with a minimum gradient profile of 3.8-11.8 pg/mm² after immersion in 100 ng/mL VEGF solution. Initial experiments to induce HUVEC migration showed that a successful gradient profile still needs to be found, however. The generated COL I membranes provide a good starting point for the provision of modular, biomimetic tissue engineering scaffolds, with initial vascularization and cell-instructive elements. They also possess the potential to be modified by a variety of bioengineering methods and biochemically equipped to meet the requirements of the cellular microenvironment.
|
195 |
Organization of Bacterial Cell Pole / Organisation du pole cellulaire bactérienAltinoglu, Ipek 26 October 2018 (has links)
Chez les bactéries, les pôles cellulaires servent de domaines subcellulaires impliqués dans plusieurs processus cellulaires. Chez l’agent pathogène du choléra, Vibrio cholerae, en forme de bâtonnet incurvé, le pole contenant l’unique flagelle est impliqué dans la virulence. La protéine d’ancrage polaire HubP interagit avec plusieurs ATPases telles que ParA1 (ségrégation des chromosomes), ParC (localisation polaire du système de chimiotaxie) et FlhG (biosynthèse des flagelles), organisant ainsi l'identité polaire de V. cholerae. Cependant, les mécanismes moléculaires exacts de cet ancrage polaire doivent encore être élucidés. L’objectif de cette thèse est d’établir une vue d'ensemble de l'organisation de pôle cellulaire ce qui implique le mécanisme d’orchestration des différentes fonctions cellulaires par l’identification de l’ensemble des partenaires d'interaction de HubP ainsi que la cartographie fine du pôle cellulaire par microscopie à super résolution (PALM). Afin d’identifier de nouveaux partenaires d'interaction de HubP, j'ai étudié la différence de composition en protéines polaires entre les contextes HubP+ et HubP-. La composition en protéines polaires a été quantifiée de manière relative et absolue en ajoutant des Tag isobares aux protéines extraites de mini-cellules. Ces mini-cellules correspondent des petits compartiments cellulaires issus d’un évènement de division anormal proche du pole et sont enrichies en protéines polaires. Parmi ~800 protéines identifiées, ~ 80 protéines ont été considérées comme enrichies en contexte HubP+ incluant de nombreuses protéines attendues (FlhG, ParC et en aval des protéines de chimiotaxie). J'ai étudié la localisation de 14 protéines par microscopie à fluorescence et pu révéler 4 nouvelles protéines présentant une localisation polaire dépendant de HubP : VbrX, VbrY, et 2 protéines hypothétiques MotV et MotW. La délétion de motV et motW provoque un défaut significatif de propagation dans une gélose molle suggérant une implication dans la chimiotaxie et/ou la motilité. Alors que la microscopie électronique a montré que les deux mutants ont bien un flagelle polaire unique, le suivi-vidéo de leur déplacement a révélé que les deux mutants présentaient des défauts de nage assez distincts: ∆motV est plutôt affecté dans le changement de direction et ∆motW dans la vitesse de déplacement. Des expériences de microscopie fluorescente ont montré que MotV, MotW et HubP présentaient des dynamiques de localisation polaire distinctes au cours du cycle cellulaire. Pour une observation fine du pôle cellulaire par PALM, de nouveaux outils d’analyse d’image à haut débit étaient exigés. La précision des contours des petites cellules bactériennes faiblement contrastées n’est pas suffisante par l’observation en fond clair, j'ai développé une nouvelle technique de marquage avec des protéines fluorescentes photo-activables pour un tracé précis de la membrane interne ou du périplasme. En outre, nous avons créé un logiciel utilisant Matlab appelé Vibio qui intègre le contour de cellule et la liste des molécules obtenues par microscopie à super résolution. La capacité d’analyse à haut débit du logiciel permet d’étudier la distribution des molécules de l’échelle de la cellule unique à une population en orientant les cellules par leur courbure longitudinale. J’ai pu révéler que HubP est principalement localisé du côté convexe du pôle de la cellule, tandis que ses partenaires se situaient principalement au milieu du pôle. Mon travail de thèse a révélé avec succès de nouveaux partenaires d'interaction de HubP et la fonction de certaines protéines dans la motilité cellulaire. J'ai développé une nouvelle technique de microscopie pour une localisation subpolaire précise qui fonctionne bien pour l'analyse d'images PALM dans Vibio. J’ai ainsi pu faire progresser les connaissances de l’orchestration des fonctions polaires chez V. cholerae. / In rod shaped bacteria, cell poles serve as important subcellular domains involved in several cellular processes including motility, chemotaxis, protein secretion, antibiotic resistance, and chromosome segregation. In the cholera pathogen Vibrio cholerae, vibrioid rod shape and single polarized flagellum involve in the virulence. Polar landmark protein HubP was shown to interact with multiple ATPases, such as ParA1 (chromosome segregation), ParC (polar localization of chemotaxis apparatus), and FlhG (flagella biosynthesis), thus organizing the polar identity of V. cholerae by tethering proteins to cell pole. However, the exact molecular mechanisms are yet to be elucidated. In this thesis, I tackled to unveil comprehensive view of the cell pole organization which implies the orchestration of different cellular functions, by identifying further interaction partners of HubP as well as drawing conceivable picture of the cell pole by super-resolution photoactivated localization microscopy. To identify new interaction partners of HubP, I used minicells in which cell poles were enriched as they derived from cell division near the cell pole. Difference in protein composition between HubP+ and HubP- minicells were examined by isobaric tags for relative and absolute quantitation. Among ~800 proteins identified, ~80 proteins were considered to be enriched in HubP+ minicells including many expected proteins (FlhG, ParC and downstream chemotaxis proteins). I chose 14 proteins to investigate their subcellular localization with fluorescent microscopy. In conclusion, I discovered 4 proteins that showed polar localization in a HubP-dependent manner. These proteins are VbrX, VbrY, and 2 hypothetical proteins MotV and MotW. ∆motV and ∆motW showed significant defect in a diameter of travel in soft agar plate that suggesting the possible involvement in chemotaxis and/or motility. Whereas electron microscopy showed that both mutants possess intact monotrichous flagellum, video-tracking revealed that the two mutants showed rather distinct defects during swimming: MotV is rather turning mutant while MotW is a speed mutant. Fluorescent microscopy experiments indicated that MotV, MotW and HubP showed distinct polar dynamics over cell cycle. For fine-scale observation of the cell pole by PALM, it was appreciated that novel tools for high-throughput analysis was demanded. Since brightfield images are not sufficient to have accurate contours of small and low contrast bacterial cells, I developed new labeling technique with photoactivatable fluorescent proteins for precise outlining at either inner membrane or periplasm. Furthermore, we created Matlab-based software called Vibio which integrates cell outline and the list of molecules obtained by super-resolution microscopy. High-throughput capability of the software enabled to analyze distribution of detected molecules from single cell to whole bunch of cells in a manner that cells are oriented by cell curvature. These allowed me to discover that HubP is mostly lopsided at the convex side of the cell pole, while its partners mostly located middle of the pole. Altogether, I successfully unveiled 4 novel interaction partners of HubP. I revealed of the function of hypothetical proteins that are involved in cell motility. I developed new labeling technique for precise polar localization that works well for PALM image analysis in Vibio. Therefore, I observed precise polar localization of HubP and other polar proteins.
|
196 |
Short-range cytokine gradients to mimic paracrine cell interactions in vitroAnsorge, Michael, Rastig, Nadine, Steinborn, Ralph, König, Tina, Baumann, Lars, Möller, Stephanie, Schnabelrauch, Matthias, Cross, Michael, Werner, Carsten, Beck-Sickinger, Annette, Pompe, Tilo 07 February 2019 (has links)
Cell fate decisions in many physiological processes, including embryogenesis, stem cell niche homeostasis and wound healing, are regulated by secretion of small signaling proteins, called cytokines, from source cells to their neighbors or into the environment. Concentration level and steepness of the resulting paracrine gradients elicit different cell responses, including proliferation, differentiation or chemotaxis. For an in-depth analysis of underlying mechanisms, in vitro models are required to mimic in vivo cytokine gradients. We set up a microparticle-based system to establish short-range cytokine gradients in a threedimensional extracellular matrix context. To provide native binding sites for cytokines, agarose microparticles were functionalized with different glycosaminoglycans (GAG). After protein was loaded onto microparticles, its slow release was quantified by confocal microscopy and fluorescence correlation spectroscopy. Besides the model protein lysozyme, SDF-1 was used as a relevant chemokine for hematopoietic stem and progenitor cell (HSPC) chemotaxis. For both proteins we found gradients ranging up to 50 µm from the microparticle surface and concentrations in the order of nM to pM in dependence on loading concentration and affinity modulation by the GAG functionalization. Directed chemotactic migration of cells from a hematopoietic cell line (FDCPmix) and primary murine HSPC (Sca-1+ CD150+ CD48-) toward the SDF-1-laden microparticles proved functional short-range gradients in a twodimensional and three-dimensional setting over time periods of many hours. The approach has the potential to be applied to other cytokines mimicking paracrine cell-cell interactions in vitro
|
197 |
Cellular mechanism of neutrophil chemotaxis: the role of CA<sup>+2</sup>, as viewed with the fluorescent dye, FURA-2, in the polarization of human polymorphonuclear leukocytes following stimulation with the chemoattractant, F-Methionyl-Leucyl-Phenylalanine: a thesisScanlon, Mary 01 April 1987 (has links)
The mechanism by which a cell translates a spatially oriented, extracellular signal into a change in morphology and behavior is the key to understanding many biological processes. In order to investigate this general phenomenon, I have studied the chemotactic response of human polymorphonuclear leukocytes (PMN's) to f-methionyl-leucyl-phenylalanine (fMLP). Stimulation of PMN's with fMLP produces a plethora of intracellular events, including increases in cytosolic Ca+2. PMN's are also morphologically and behaviorally polarized by stimulation with chemoattractant; the membrane components and cytosolic organelles of polarized PMN's become asymmetrically distributed. Polarization and subsequent orientation of PMN's in the direction of fMLP are steps which precede and are necessary for chemotaxis.
I have chosen to examine the role of Ca+2, a ubiquitous second messenger, in the polarization of PMN's to fMLP. To accomplish this goal, Ca+2 has been measured in resting and polarized PMN's, utilizing the intracellular fluorescence of the Ca+2-sensitive dye, fura-2. Initial experiments have revealed a Ca+2-insensitive form of fura-2 associated with PMN's which, if uncorrected, would lead to erroneous measurements of [Ca+2]. I have suggested putative sources for the Ca+2-insensitive fluorescence in PMN's and have presented two methods for accurate calculation of [Ca+2] in spite of the additional component of fluorescence.
As measured from the cell-associated fluorescence of fura-2, [Ca+2] increases without a detectable lag upon addition of fMLP to PMN's in suspension. The rise in [Ca+2] is associated with an increase in the percentage of cells which polarize to fMLP. The increases in [Ca+2] and in polarization are both directly related to increases in the concentration of chemoattractant. Inhibition of the rise in [Ca+2], by exposure of the human donor to aspirin or addition of EGTA to isolated cells, results in a concommitant reduction in the percentage of cells which polarize to fMLP. These findings are consistent with the hypothesis that Ca+2 acts as a second messenger in the pathway of transduction of the extracellular signal which results in polarization. However, addition of ionomycin, the Ca+2-selective ionophore, to PMN's did not induce polarization either in the presence or in the absence of fMLP. This result suggests that increases Ca+2, which appear to be necessary for polarization, are locally distributed within the fMLP-stimulated PMN.
Examination of the subcellular distribution of Ca+2 using the digital imaging microscope reveals that Ca+2 is not uniformly distributed in the polarized PMN. Cells polarized by stimulation with fMLP often exhibit regional differences in [Ca+2] from front to tail. The magnitude and direction of the intracellular gradient varies among cells and suggests that within individual cells, the heterogeneity of [Ca+2] varies temporally and spatially as the cell chemotaxes.
The results of the experiments conducted in this dissertation suggest that Ca+2 plays an important role as second messenger in fMLP-stimulated PMN's. I suggest that the morphological polarity of the chemotactic PMN is dependent upon the establishment and maintenance of an intracellular Ca+2 gradient.
|
198 |
Towards Bacteria Inspired Stochastic Control Strategies for Microrobotic Swarm IntelligenceGeuther, Brian Q. 04 September 2013 (has links)
Collective robotic behavior poses significant advantages over classical control methods such as system response and robustness. Biological cooperative communities have provided great insights for development of many control algorithms. Localized chemical signaling within bacterial communities is used for directed movement and dynamic density measurements. Both individual and population scale models have been created to adequately model community dynamics. These dynamics, including directed motion due to chemotaxis and density controlled functionality from quorum sensing, are modeled through an individual scale in a community scale environment. This modeling provides both a platform for analyzing the BacteriaBot engineered system as well as inspires decentralized stochastic control techniques for solving bacteria-like collaborative control problems. / Master of Science
|
199 |
Moderne Tissue Engineering Konzepte für die Knochendefektheilung: Funktionalisierung von Scaffolds auf Basis von mineralisiertem Kollagen zur Stimulation von Angiogenese und OsteogeneseQuade, Mandy Ilona 11 October 2021 (has links)
Der Bedarf an modernen Konzepten der regenerativen Medizin für die Therapie von Knochensubstanzdefekten steigt zunehmend angesichts unserer sich demographisch wandeln-den Gesellschaft und der damit einhergehenden, steigenden Zahl altersrelevanter orthopädisch-unfallchirurgischer Erkrankungen. Die wissenschaftlichen Erkenntnisse der letzten Jahrzehnte erlauben es, grundlegende biologische Prozesse der Knochenregeneration nicht nur besser zu verstehen, sondern diese auch durch gezielte Einflussnahme zu nutzen. Auf Grundlage dieser Erkenntnisse fokussiert die Forschung die Entwicklung moderner bioaktiver Biomaterialien mit dem intrinsischen Potenzial, die körpereigene Geweberegeneration lokal im Defektbereich – in situ – zu stimulieren. Die Stimulation zellulärer Regenerationsmechanismen kann entweder direkt durch Zell-Material-Interaktion induziert werden (in situ Regeneration), oder durch chemotaktische Attraktion von Zellen mit regenerativem Potenzial aus dem umliegenden Gewebe, welche ihrerseits die Geweberegeneration induzieren (in situ Tissue Engineering). Ohne extrakorporale Besiedlung der Scaffolds und deren in vitro-Kultivierung vor der Implantation umgehen diese in situ-Strategien mehrere Limitationen und Herausforderungen des klassischen Tissue Engineering-Konzepts. Dem in situ-Konzept folgend wurden im Rahmen dieser Dissertation zwei Strategien zur gezielten Funktionalisierung eines Knochenersatzmaterials aus mineralisiertem Kollagen unter-sucht: I) Zum einen wurde mineralisiertes Kollagen mit dem osteoanabol wirksamen Erdalkalimetall Strontium modifiziert, um lokal die Osteogenese zu stimulieren. II) Zum anderen wurden poröse Scaffolds aus mineralisiertem Kollagen mit einem zentralen Depot funktionalisiert, welches mit einem Wirkstoffgemisch beladen wurde, welches aus dem Sekretom Hypoxie-konditionierter hBMSC (HCM) generiert wurde. Durch gezielte Attraktion von Zellen mit regenerativem Potenzial und gleichzeitiger Stimulation der Vaskularisierung soll dieses Scaffoldsystem gezielt die Knochendefektheilung induzieren. Für die Strontium-Modifikation wurde während der Scaffoldsynthese das Calcium der Mineralphase sukzessive durch Strontium substituiert und die hergestellten Scaffolds eingehend materialwissenschaftlich charakterisiert (Publikation 2.1; Quade et al., 2018a). Die simultane Fibrillierung und Mineralisierung von Kollagen führte zur Bildung von Nanokompositen, wobei die Mineralphasen von nanokristallinem Hydroxylapatit (Sr0), über schwach kristalline Strontium-reiche Phasen zu einer gemischten Mineralphase (Sr100) aus amorphem Strontiumphosphat und hochkristallinem Strontiumhydroxylapatit verschoben wurde. Freisetzungsversu-che über 28 Tage zeigten, dass die getesteten Varianten Sr50 und Sr100 anhaltend Sr2+-Ionen in einem Konzentrationsbereich freisetzten, in dem sowohl die Knochenneubildung stimuliert, als auch die zelluläre Knochenresorption gehemmt wird. In vitro zeigte sich der osteoanabole Effekt Strontium-modifizierter mineralisierter Kollagenscaffolds durch eine signifikant gesteigerte Proliferation und osteogene Differenzierung von hBMSC. In vivo – als Knochenersatzmaterial im murinen segmentalen FemurdefektModell – zeigten Strontium-modifizierte Scaffolds aus mineralisiertem Kollagen zwar ein tendenziell gesteigertes Knochenvolumen mit erhöhter Osteoblastenzahl, signifikant weniger Osteoklasten und signifikant gesteigerter Vaskularisierung, jedoch war der Effekt verhältnismäßig schwach und allein nicht ausreichend für eine knöcherne Überbrückung des Defektbereiches (Publikation 2.2; Quade et al., 2020a). Durch Kombination von Sr-Modifikation und BMP-2-Funktionalisierung konnte die Qualität des neugebildeten Knochens signifikant gesteigert werden. Um das Konzept des neuartigen Wirkstoffdepot-basierten Scaffoldsystems zu testen, wurde das zentrale Depot zunächst mit dem Modell-Wachstumsfaktor VEGF beladen. Der Einsatz der Biopolymere Alginat, Hyaluronsäure und Heparin als Depotbildner erlaubt die Modulation der Wirkstofffreisetzung. Während die Hydrogele Alginat und Hyaluronsäure dabei als physikalischen Barriere fungieren, ermöglichte die hohe ionische Bindungsaffinität von Heparin und VEGF dessen nahezu lineare Freisetzung über den Versuchszeitraum von 28 Tagen. Im Migrationsversuch bewirkte die retardierte VEGF-Freisetzung und damit die Stabilisierung des Wirkstoffgradienten die gerichtete Migration von HDMEC in den Scaffold. Je verzögerter die VEGF-Freisetzung – und damit je steiler der Wirkstoffgradient – desto tiefer migrierten HDMEC in die Scaffolds (Publikation 2.3; Quade et al., 2017a). Entscheidend für eine effiziente Knochenregeneration ist sowohl die Attraktion von Zellen mit regenerativem Potenzial, als auch die Stimulation der Vaskularisierung, um den Gasaustausch, die Nähstoffversorgung und den Abtransport metabolischer Nebenprodukte der Zel-len im Defektbereich zu gewährleisten. Im Sinne des in situ Tissue Engineering-Konzepts wurde das zentrale Wirkstoffdepot mit einem natürliche Wirkstoffgemisch, welches aus dem Sekretom Hypoxie-konditionierter hBMSC (HCM) gewonnen wurde, beladen (Publikation 2.4; (Quade et al., 2020b). Unter hypoxischen Bedingungen sezernieren hBMSC einen Wirkstoffcocktail, der unter anderem Wachstumsfaktoren, Chemokine, Hormone und Exosomen enthält und ein starkes angiogenes und chemotaktisches Potenzial gegenüber hBMSC zeigt. Um das Wirkstoffdepot möglichst effizient zu beladen, wurde zum einen die Wirkstoffausbeute von HCM durch Anpassung der Herstellungsparameter optimiert. Gemessen am Wachstumsfaktor VEGF konnte so die Ausbeute bis zu 100-fach gesteigert werden. Des Weiteren konnte durch Dialyse, Gefriertrocknung und Resuspension mit dem Depot-bildenden Biopolymer zusätzlich eine bis zu 50-fache Konzentrierung des Wirkstoffgemisches erreicht wer-den ohne Verlust der Bioaktivität. Mit steigender HCM-Konzentration im Depot konnte sowohl eine tiefere Migration von hBMSC, als auch eine Verbesserung der Angiogenese erzielt wer-den. Zusätzlich bewirkte die retardierte HCM-Freisetzung aus Alginat-basierten Depots eine signifikante Steigerung von Länge, Dichte und Einsprosstiefe prävaskulärer Strukturen. Zwar ist die Charakterisierung und standardisierte Herstellung des natürlichen HCM-basierten Wirkstoffgemisches eine Herausforderung, jedoch ist davon auszugehen, dass dessen be-deutendes therapeutisches Potenzial gerade durch die Komplexität der sezernierten Faktoren und deren synergistisches Zusammenspiel bedingt wird. Die Standardisierung der HCM-basierten Wirkstoffherstellung, sowie eine bessere Quantifizierung und Charakterisierung der sezernierten Proteine sollte in zukünftigen Studien forciert werden. Beide Strategien, die im Rahmen dieser Dissertation untersucht wurden, haben das Potenzial, als zellfreie „ready-to-use“-Knochenersatzmaterialien zu erschwinglichen Kosten, bei geringerer regulatorischer Komplexität und mit gleichbleibend hoher Qualität produziert zu wer-den. Während Strontium-modifiziertes mineralisiertes Kollagen allein in vivo nur ein schwaches osteoinduktives Potenzial zeigte, konnte die Qualität und Festigkeit des neugebildeten Knochengewebes in Kombination mit BMP-2 signifikant verbessert werden. Als leicht-osteogenes Biomaterial könnte dieses zur Unterstützung etablierter therapeutischer Konzepte eingesetzt werden – vor allem bei Patienten mit systemischen Knochenerkrankungen wie beispielsweise Osteoporose. Das komplexere Depot-basierte Scaffoldsystem hingegen hat ein großes Potenzial für die klinische Translation. Zum einen kann das Depot je nach Bedarf mit verschiedensten Wirkstoffen beladen werden, deren Freisetzung in Abhängigkeit des Depot-bildenden Biopolymers manipuliert werden kann. Beladen mit dem natürlichen HCM-basierten Wirkstoffgemisch zeigte das Scaffoldsystem ein beeindruckendes chemotaktisches und angiogenes Potenzial. Gegenüber etablierten rhBMP-2-Applikationen, stellt dieser in situ Tissue Engineering-Ansatz damit eine vielversprechende Alternative für die Knochen-defekt-Therapie dar, bei gleichzeitig deutlich reduzierten Kosten und Nebenwirkungen. Zu-künftige in vivo-Studien im Großtiermodell sollten das regenerative Potenzial des Depot-basierten Scaffoldsystems umfassend verifizieren. / Our demographically changing society causes a rising number of age-related orthopaedic and trauma surgical diseases. Modern approaches following the concept of regenerative medicine are needed for the therapeutical treatment of bone defects. Scientific findings of the last decades not only allow for a better understanding of fundamental biological processes in the field of bone regeneration, but also to use this knowledge for effective therapeutic concepts. Therefore, research is focusing on the development of modern bioactive biomaterials with the intrinsic potential to locally stimulate the body's own regeneration capacity - in situ. The stimulation of tissue regeneration can either be induced directly by cell-material interaction (in situ regeneration), or by chemotactic attraction of cells with regenerative potential from the surrounding tissue, which would in turn induce local tissue regeneration (in situ tissue engineering). Since these in situ strategies forgo the extracorporeal seeding and in vitro cultivation of scaffolds prior implantation, several limitations and challenges of the classical tissue engineering concept can be circumvented. Within the scope of this dissertation two strategies were investigated. Following the in situ concept, scaffolds based on mineralized collagen were specifically functionalized in order to locally induce bone defect healing: I) On the one hand, mineralised collagen was modified with strontium to locally stimulate osteogenesis. II) On the other hand, porous scaffolds of mineralised collagen were functionalised with a central depot loaded with a cocktail of signalling factors generated from the secretome of hypoxia-conditioned hBMSC (HCM). By specifically attracting cells with regenerative potential and simultaneously stimulating vascularisation, this scaffold-system could actively induce bone defect healing. For the strontium modification, the calcium of the mineral phase was successively substituted by strontium during the scaffold synthesis. The generated scaffolds were characterised in detail from a material science perspective (publication 2.1; Quade et al.et al., 2018a). In all tested approaches simultaneous collagen fibrillation and mineralisation led to the formation of nanocomposites. With rising strontium substitution, the mineral phases shifted from nanocrystalline hydroxylapatite (Sr0), via weakly crystalline strontium-rich phases to a mixed mineral phase of amorphous strontium phosphate and highly crystalline strontium hydroxylapatite (Sr100). Release experiments showed that the scaffold variants Sr50 and Sr100 released Sr2+-ions continuously over 28 days in a range, which is known to exploit the dual effect of strontium by simultaneously promoting proliferation and osteogenic differentiation as well as inhibiting the osteoclastic bone resorption without impairing the osteoclastogenesis. In vitro, the osteoanabolic effect of strontium-modified mineralised collagen scaffolds was demonstrated by significantly increased proliferation and osteogenic differentiation of hBMSC. In vivo - in the murine segmental femoral defect model - strontium-modified scaffolds made of mineralised collagen showed a tendency to increase bone volume with an increased number of osteoblasts, significantly reduced osteoclasts and significantly increased vascularisation. However, the effect was relatively weak and not sufficient to cause a bridging of the defect area (publication 2.2; Quade et al., 2020a). By combining Sr modification and BMP-2 functionalisation, the quality of the newly formed bone was significantly improved. To test the concept of the novel depot-based scaffold system, the central depot was loaded with the model growth factor VEGF. The use of the biopolymers alginate, hyaluronic acid and heparin as depot-forming agents allowed the modulation of drug release. While the hydrogels alginate and hyaluronic acid act as a physical barrier, the high ionic binding affinity of heparin and VEGF facilitated an almost linear VEGF-release over the experimental period of 28 days. In migration experiments, the retarded VEGF release and thus the stabilisation of the VEGF- gradient caused the directed migration of HDMEC into the scaffolds. The slower the VEGF release - and thus the steeper the drug gradient - the deeper HDMEC migrated into the scaffolds (publication 2.3; Quade et al., 2017). Crucial for an efficient bone regeneration is both the attraction of cells with regenerative potential and the stimulation of vascularisation to ensure gas exchange, nutrient supply and removal of metabolic by-products in the defect area. In line with the in situ tissue engineering concept, the central depot was loaded with a natural factor mix obtained from the secretome of hypoxia-conditioned hBMSC (HCM) (publication 2.4; (Quade et al., 2020b). Under hypoxic conditions, hBMSC secrete a cocktail of active substances that contains, among others, growth factors, chemokines, hormones and exosomes. This factor mix shows a strong angiogenic potential and is highly chemo-attractive to hBMSC. In order to load the scaffold depot as efficiently as possible, the signalling factor-yield of HCM was optimised by adjusting the cultivation settings for HCM-generation. Measured by VEGF as a model growth factor, the yield was increased up to 100 times. In addition, dialysis, freeze-drying and resuspension with the depot-forming biopolymer made it possible to achieve another 50-fold concentration without loss of bioactivity. With increasing HCM-concentration in the depot, both a deeper migration of hBMSC and an improvement in angiogenesis could be achieved. In addition, the retarded release of HCM from alginate-based depots resulted in a significant increase in length, density and sprouting depth of prevascular structures. Although the characterisation and standardised production of the natural HCM-based signalling factor cocktail is challenging, it can be assumed that its significant therapeutic potential relies particularly on that complexity of the secreted factors and their synergistic interaction. The standardized production of HCM-derived signalling factor cocktails, as well as a better quantification and characterisation of the secreted proteins should be focused by future studies. Both strategies investigated in this dissertation have the potential to be produced as cell-free 'ready-to-use' bone substitute materials at affordable costs, with less regulatory complexity and with consistently high quality. While strontium-modified mineralised collagen alone showed only a weak osteoinductive potential in vivo, the quality and strength of the newly formed bone tissue was significantly improved in combination with BMP-2. This light-osteogenic biomaterial could be used to support established therapeutic concepts - especially in patients with systemic bone diseases such as osteoporosis. The more complex depot-based scaffold system on the other hand has great potential for clinical translation. Depending on the application, the depot can be loaded with a wide variety of active substances – their release kinetics in turn can be manipulated depending on the depot-forming biopolymer. Loaded with the natural HCM-derived cocktail of signalling molecules, the scaffold system showed an impressive chemotactic and angiogenic potential. Compared to established rhBMP-2 applications, this in situ tissue engineering approach represents a promising alternative for bone defect therapy, at significantly reduced costs and side effects. Future in vivo studies in large animal models should verify the regenerative potential of the herewith developed depot-based scaffold system.
|
200 |
MATHEMATICAL MODELS OF PATTERN FORMATION IN CELL BIOLOGYYang, Xige January 2018 (has links)
No description available.
|
Page generated in 0.0687 seconds