1 |
Architecture and physical design for advanced networks-on-chipJang, Woo Young 01 June 2011 (has links)
The aggressive scaling of the semiconductor technology following the Moore’s Law has delivered true system-on-chip (SoC) integration. Network-on-chip (NoC) has been recently introduced as an effective solution for scalable on-chip communication since dedicated point-to-point (P2P) interconnection and shared bus architecture become performance and power bottlenecks in the SoCs. This dissertation studies three critical NoC challenges such as latency, power, and compatibility with emerging technologies in aspect of an architecture and physical design level.
Latency is a key issue in NoC since the performance of applications considerably depends on resource sharing policies employed in an on-chip network. NoCs have been mainly developed to improve network-level performance that captures the inherent performance characteristics of a network itself, but the network-level optimizations are not directly related to application- or system-level performance. In addition, memory latency on NoC critically affects the performance of applications or systems. We propose a synchronous dynamic random access memory (SDRAM) aware NoC design to optimize memory throughput, latency, and design complexity. Furthermore, it is extended to an application-aware NoC design to provide the quality-of-service (QoS) of memory for various applications.
NoC provides great on-chip communication. However, it brings no true relief to power budget when the on-chip network scales in terms of complexity/size and signal bandwidth. The combination of NoC and other techniques has the potential to reduce power. We study two power saving research topics for NoC: (a) we propose a voltage-frequency island (VFI) aware NoC optimization framework with a better tradeoff between power efficiency and design complexity to minimize both computation and on-chip communication power. (b) We formulate an application mapping problem to mixed integer quadratic programming (MIQP) with the purpose of reducing power consumption in various hard networks and develop highly efficient algorithms for the MIQP.
Regarding NoC compatible with new technologies, we focus on three dimensional (3D) die integration based on through-silicon vias (TSVs). Since an on-chip network design has been subject to not only application constraints but also design/manufacturing constraints, a 3D NoC design is required for innovation in interconnection networks. We propose a chemical-mechanical polishing (CMP) aware application-specific 3D NoC design that minimizes TSV height variation, thus reduces bonding failure, and meanwhile optimizes conventional NoC design objectives such as hop count, wirelength, power, and area. / text
|
2 |
Arquitetura de NoC programável baseada em múltiplos clusters de cores para suporte a padrões de comunicação coletiva / Programmable multi-cluster noc architecture to support collective communication patternsFreitas, Henrique Cota de January 2009 (has links)
As próximas gerações de processadores many-core exigem que novas abordagens no projeto de arquitetura de processadores sejam propostas. Neste novo contexto, as redes de comunicação intra-chip são importantes para garantir o desempenho dos programas. Soluções tradicionais de interconexão possuem limites físicos que comprometem a escalabilidade e o desempenho no processamento de aplicações paralelas de diversos tipos. A alternativa apontada pelo estado da arte é a Network-on-Chip (NoC) composta por roteadores e outros elementos de rede capazes de prover comunicação escalável e de alto desempenho. No entanto, as cargas de trabalho geram padrões de comunicação diferentes que podem influenciar no desempenho da rede. Existem pesquisas que abordam metodologias de projeto dedicado de NoCs em função de domínios de aplicações específicos. Apesar de uma NoC dedicada possuir um alto desempenho, cargas de trabalho paralelas geram padrões de comunicação coletiva que mudam dinamicamente. Com o objetivo de aumentar a flexibilidade de redes-em-chip, trabalhos correlatos utilizam conceitos de computação reconfigurável para aumentar a capacidade da arquitetura da NoC se adaptar em função de padrões de comunicação. Alguns trabalhos focam na programação de FPGAs e outros em ASICs polimórficos. O objetivo desta tese é propor uma arquitetura de Network-on-Chip que suporte múltiplos clusters de núcleos de processamento através de roteadores programáveis e de topologias reconfiguráveis. Cada roteador é composto por uma chave crossbar reconfigurável capaz de implementar topologias dinamicamente através do uso de um segundo nível de reconfiguração. Os roteadores possuem processadores de rede que aumentam a flexibilidade e a capacidade da NoC se adaptar ao padrão de comunicação através de programas que monitoram e gerenciam a rede. Portanto, a contribuição da tese é a Arquitetura de NoC Programável Baseada em Múltiplos Clusters de Cores. Os resultados baseados em modelos analíticos e de simulação, e cargas de trabalho artificiais e naturais, mostram que a arquitetura da NoC possui um alto desempenho e vazão de pacotes, proporcionados pela adaptação de topologias e redução da influência da rede na comunicação. A ocupação em FPGA mostra que os roteadores programáveis possuem tamanho similares a NoCs com arquiteturas tradicionais para gerenciamento de mesma quantidade de núcleos. A menor utilização de buffers de entrada resulta em uma melhor eficiência no consumo de potência e energia. Portanto, através dos modelos de projeto e avaliação foi possível verificar através dos resultados que a arquitetura da MCNoC é uma alternativa para suportar padrões de comunicações coletivas. / For the next generation of many-core processors, new design methodologies must be proposed. In this context, on-chip interconnections are important to assure the program performance. Traditional approaches of interconnections have physical constraints that reduce the scalability and performance to process parallel applications. The state-of-theart points out to the Network-on-Chip (NoC), which consists of routers and other network devices capable of increasing the communication scalability and performance. However, workloads produce different types of communication patterns, which can influence the network performance. There are research works that explore applicationspecific NoC design to response the demand on specific workloads. Although a dedicated NoC has a high performance, parallel workloads have different collective communication patterns. In order to increase the flexibility of NoCs, related works use concepts of reconfigurable computing to add architecture adaptability to support dynamic communication patterns. Some works focus on FPGA-based reconfiguration and others on polymorphic ASICs. The goal of this thesis is to propose an alternative Programmable Multi-Cluster NoC architecture. Each router consists of a reconfigurable crossbar switch capable of implementing dynamic topologies through a second reconfiguration level. The routers have network processors that increase the flexibility and the NoC adaptability through management programs in order to support different workloads. Therefore, the contribution of this thesis is the following: A Programmable Multi-Cluster NoC (MCNoC) architecture. Based on analytical and simulation models, and artificial and natural workloads, results show the high performance and throughput for the proposed NoC architecture, due to the adaptable topologies and low network latency impact. Results based on FPGA shows a similar component utilization considering the proposed programmable NoC relative to conventional NoC architectures for the same number of processing cores. The low utilization of input buffers improves the efficiency of power and energy consumption. Therefore, through design and evaluation models, the NoC proposal was verified and the results point out the MCNoC as an alternative architecture to support collective communication patterns.
|
3 |
Arquitetura de NoC programável baseada em múltiplos clusters de cores para suporte a padrões de comunicação coletiva / Programmable multi-cluster noc architecture to support collective communication patternsFreitas, Henrique Cota de January 2009 (has links)
As próximas gerações de processadores many-core exigem que novas abordagens no projeto de arquitetura de processadores sejam propostas. Neste novo contexto, as redes de comunicação intra-chip são importantes para garantir o desempenho dos programas. Soluções tradicionais de interconexão possuem limites físicos que comprometem a escalabilidade e o desempenho no processamento de aplicações paralelas de diversos tipos. A alternativa apontada pelo estado da arte é a Network-on-Chip (NoC) composta por roteadores e outros elementos de rede capazes de prover comunicação escalável e de alto desempenho. No entanto, as cargas de trabalho geram padrões de comunicação diferentes que podem influenciar no desempenho da rede. Existem pesquisas que abordam metodologias de projeto dedicado de NoCs em função de domínios de aplicações específicos. Apesar de uma NoC dedicada possuir um alto desempenho, cargas de trabalho paralelas geram padrões de comunicação coletiva que mudam dinamicamente. Com o objetivo de aumentar a flexibilidade de redes-em-chip, trabalhos correlatos utilizam conceitos de computação reconfigurável para aumentar a capacidade da arquitetura da NoC se adaptar em função de padrões de comunicação. Alguns trabalhos focam na programação de FPGAs e outros em ASICs polimórficos. O objetivo desta tese é propor uma arquitetura de Network-on-Chip que suporte múltiplos clusters de núcleos de processamento através de roteadores programáveis e de topologias reconfiguráveis. Cada roteador é composto por uma chave crossbar reconfigurável capaz de implementar topologias dinamicamente através do uso de um segundo nível de reconfiguração. Os roteadores possuem processadores de rede que aumentam a flexibilidade e a capacidade da NoC se adaptar ao padrão de comunicação através de programas que monitoram e gerenciam a rede. Portanto, a contribuição da tese é a Arquitetura de NoC Programável Baseada em Múltiplos Clusters de Cores. Os resultados baseados em modelos analíticos e de simulação, e cargas de trabalho artificiais e naturais, mostram que a arquitetura da NoC possui um alto desempenho e vazão de pacotes, proporcionados pela adaptação de topologias e redução da influência da rede na comunicação. A ocupação em FPGA mostra que os roteadores programáveis possuem tamanho similares a NoCs com arquiteturas tradicionais para gerenciamento de mesma quantidade de núcleos. A menor utilização de buffers de entrada resulta em uma melhor eficiência no consumo de potência e energia. Portanto, através dos modelos de projeto e avaliação foi possível verificar através dos resultados que a arquitetura da MCNoC é uma alternativa para suportar padrões de comunicações coletivas. / For the next generation of many-core processors, new design methodologies must be proposed. In this context, on-chip interconnections are important to assure the program performance. Traditional approaches of interconnections have physical constraints that reduce the scalability and performance to process parallel applications. The state-of-theart points out to the Network-on-Chip (NoC), which consists of routers and other network devices capable of increasing the communication scalability and performance. However, workloads produce different types of communication patterns, which can influence the network performance. There are research works that explore applicationspecific NoC design to response the demand on specific workloads. Although a dedicated NoC has a high performance, parallel workloads have different collective communication patterns. In order to increase the flexibility of NoCs, related works use concepts of reconfigurable computing to add architecture adaptability to support dynamic communication patterns. Some works focus on FPGA-based reconfiguration and others on polymorphic ASICs. The goal of this thesis is to propose an alternative Programmable Multi-Cluster NoC architecture. Each router consists of a reconfigurable crossbar switch capable of implementing dynamic topologies through a second reconfiguration level. The routers have network processors that increase the flexibility and the NoC adaptability through management programs in order to support different workloads. Therefore, the contribution of this thesis is the following: A Programmable Multi-Cluster NoC (MCNoC) architecture. Based on analytical and simulation models, and artificial and natural workloads, results show the high performance and throughput for the proposed NoC architecture, due to the adaptable topologies and low network latency impact. Results based on FPGA shows a similar component utilization considering the proposed programmable NoC relative to conventional NoC architectures for the same number of processing cores. The low utilization of input buffers improves the efficiency of power and energy consumption. Therefore, through design and evaluation models, the NoC proposal was verified and the results point out the MCNoC as an alternative architecture to support collective communication patterns.
|
4 |
Arquitetura de NoC programável baseada em múltiplos clusters de cores para suporte a padrões de comunicação coletiva / Programmable multi-cluster noc architecture to support collective communication patternsFreitas, Henrique Cota de January 2009 (has links)
As próximas gerações de processadores many-core exigem que novas abordagens no projeto de arquitetura de processadores sejam propostas. Neste novo contexto, as redes de comunicação intra-chip são importantes para garantir o desempenho dos programas. Soluções tradicionais de interconexão possuem limites físicos que comprometem a escalabilidade e o desempenho no processamento de aplicações paralelas de diversos tipos. A alternativa apontada pelo estado da arte é a Network-on-Chip (NoC) composta por roteadores e outros elementos de rede capazes de prover comunicação escalável e de alto desempenho. No entanto, as cargas de trabalho geram padrões de comunicação diferentes que podem influenciar no desempenho da rede. Existem pesquisas que abordam metodologias de projeto dedicado de NoCs em função de domínios de aplicações específicos. Apesar de uma NoC dedicada possuir um alto desempenho, cargas de trabalho paralelas geram padrões de comunicação coletiva que mudam dinamicamente. Com o objetivo de aumentar a flexibilidade de redes-em-chip, trabalhos correlatos utilizam conceitos de computação reconfigurável para aumentar a capacidade da arquitetura da NoC se adaptar em função de padrões de comunicação. Alguns trabalhos focam na programação de FPGAs e outros em ASICs polimórficos. O objetivo desta tese é propor uma arquitetura de Network-on-Chip que suporte múltiplos clusters de núcleos de processamento através de roteadores programáveis e de topologias reconfiguráveis. Cada roteador é composto por uma chave crossbar reconfigurável capaz de implementar topologias dinamicamente através do uso de um segundo nível de reconfiguração. Os roteadores possuem processadores de rede que aumentam a flexibilidade e a capacidade da NoC se adaptar ao padrão de comunicação através de programas que monitoram e gerenciam a rede. Portanto, a contribuição da tese é a Arquitetura de NoC Programável Baseada em Múltiplos Clusters de Cores. Os resultados baseados em modelos analíticos e de simulação, e cargas de trabalho artificiais e naturais, mostram que a arquitetura da NoC possui um alto desempenho e vazão de pacotes, proporcionados pela adaptação de topologias e redução da influência da rede na comunicação. A ocupação em FPGA mostra que os roteadores programáveis possuem tamanho similares a NoCs com arquiteturas tradicionais para gerenciamento de mesma quantidade de núcleos. A menor utilização de buffers de entrada resulta em uma melhor eficiência no consumo de potência e energia. Portanto, através dos modelos de projeto e avaliação foi possível verificar através dos resultados que a arquitetura da MCNoC é uma alternativa para suportar padrões de comunicações coletivas. / For the next generation of many-core processors, new design methodologies must be proposed. In this context, on-chip interconnections are important to assure the program performance. Traditional approaches of interconnections have physical constraints that reduce the scalability and performance to process parallel applications. The state-of-theart points out to the Network-on-Chip (NoC), which consists of routers and other network devices capable of increasing the communication scalability and performance. However, workloads produce different types of communication patterns, which can influence the network performance. There are research works that explore applicationspecific NoC design to response the demand on specific workloads. Although a dedicated NoC has a high performance, parallel workloads have different collective communication patterns. In order to increase the flexibility of NoCs, related works use concepts of reconfigurable computing to add architecture adaptability to support dynamic communication patterns. Some works focus on FPGA-based reconfiguration and others on polymorphic ASICs. The goal of this thesis is to propose an alternative Programmable Multi-Cluster NoC architecture. Each router consists of a reconfigurable crossbar switch capable of implementing dynamic topologies through a second reconfiguration level. The routers have network processors that increase the flexibility and the NoC adaptability through management programs in order to support different workloads. Therefore, the contribution of this thesis is the following: A Programmable Multi-Cluster NoC (MCNoC) architecture. Based on analytical and simulation models, and artificial and natural workloads, results show the high performance and throughput for the proposed NoC architecture, due to the adaptable topologies and low network latency impact. Results based on FPGA shows a similar component utilization considering the proposed programmable NoC relative to conventional NoC architectures for the same number of processing cores. The low utilization of input buffers improves the efficiency of power and energy consumption. Therefore, through design and evaluation models, the NoC proposal was verified and the results point out the MCNoC as an alternative architecture to support collective communication patterns.
|
5 |
RETHROTTLE : Execution Throttling In The REDEFINE SoC ArchitectureSatrawala, Amar Nath 06 1900 (has links)
REDEFINE is a reconfigurable SoC architecture that provides a unique platform for high performance and low power computing by exploiting the synergistic interaction between coarse grain dynamic dataflow model of computation (to expose abundant parallelism in the applications) and runtime composition of efficient compute structures (on the reconfigurable computation resources). Computer architectures based on the dynamic dataflow model of computation have to be an infinite resource implementation to be able to exploit all available parallelism in all applications. It is not feasible for any real architectural implementation. When limited resource implementations are considered, there is a possibility of loss of performance (inability to efficiently exploit available parallelism). In this thesis, we study the throttling of execution in the REDEFINE architecture to maximize the architecture efficiency. We have formulated it as a design space exploration problem at two levels i.e. architectural configurations and throttling schemes.
Reduced feature/high level simulation or feature specific analytical approaches are very useful for the selective study/exploration of early in design phase architectures/systems. Our approach is similar to that of SEASAME Framework which is used for the study of MPSoC (Multiprocessor SoC) architectures. We have used abstraction (feature reduction) at the levels of architecture and model of computation to make the problem approachable and practically feasible. A feature specific fast hybrid (mixed level) simulation framework for the early in design phase study is developed and implemented for the huge design space exploration (1284 throttling schemes, 128 architectural configurations and 10 applications i.e. 1.6 million executions).
We have done performance modeling in terms of selection of important performance criteria, ranking of the explored throttling schemes and investigation of the effectiveness of the design space exploration using statistical hypothesis testing. We found some interesting obvious/intuitive and some non-obvious/counterintuitive results. The two performance criteria namely Exec.T and Avg.TU were found sufficient to represent the performance and the resource usage characteristics of the architecture independent of the throttling schemes, the architectural configurations and the applications. The ranking of the throttling schemes based on the selected performance criteria is found to be statistically very significant. The intuitive throttling schemes span the range of performance from the best to the worst. We found absence of trade-off amongst all of the performance criteria. The best throttling schemes give appreciable overall performance (25%) and resource usage (37%) gains in the throttling unit simultaneously. The design space exploration of the throttling schemes is found to be fine and uniform.
|
Page generated in 0.1869 seconds