• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chiral symmetry breaking and external fields in the Kuperstein-Sonnenschein model

Alam, Muhammad Sohaib 02 August 2012 (has links)
A novel holographic model of chiral symmetry breaking has been proposed by Kuperstein and Sonnenschein by embedding non-supersymmetric probe D7 and anti-D7 branes in the Klebanov-Witten background. We study the dynamics of the probe flavours in this model in the presence of finite temperature and a constant electromagnetic field. In keeping with the weakly coupled field theory intuition, we find the magnetic field promotes spontaneous breaking of chiral symmetry whereas the electric field restores it. The former effect is universally known as the ``magnetic catalysis" in chiral symmetry breaking. In the presence of an electric field such a condensation is inhibited and a current flows. Thus we are faced with a steady-state situation rather than a system in equilibrium. We conjecture a definition of thermodynamic free energy for this steady-state phase and using this proposal we study the detailed phase structure when both electric and magnetic fields are present in two representative configurations: mutually perpendicular and parallel. / text
2

Lattice QCD study for the relation between confinement and chiral symmetry breaking / 格子QCDを用いた閉じ込めとカイラル対称性の自発的破れの関係性の研究

Doi, Takahiro 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20174号 / 理博第4259号 / 新制||理||1612(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)准教授 菅沼 秀夫, 教授 國廣 悌二, 教授 川合 光 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
3

Self-assembly of two-dimensional convex and nonconvex colloidal platelets

Pakalidou, Nikoletta January 2017 (has links)
One of the most promising routes to create advanced materials is self-assembly. Self-assembly refers to the self-organisation of building blocks to form ordered structures. As the properties of the self-assembled materials will inherit the properties of the basic building blocks, it is then possible to engineer the properties of the materials by tailoring the properties of the building blocks. In order to create mesoscale materials, the self-assembly of molecular building blocks of different sizes and interactions is important. Mesoscopic materials can be obtained by using larger building blocks such as nano and colloidal particles. Colloidal particles are particularly attractive as building blocks because it is possible to design interparticle interactions by controlling both the chemistry of the particles' surface and the properties of the solvent in which the particles are immersed. The self-assembly of spherical colloidal particles has been widely reported in the literature. However, advances in experimental techniques to produce particles with different shapes and sizes have opened new opportunities to create more complex structures that cannot be formed using spherical particles. Indeed, the particles' shape and effective interactions between them dictate the spatial arrangement and micro-structure of the system, which can be engineered to produce functional materials for a wide range of applications. The driving forces determining the self-assembly of colloidal particles can be modified by the use of external influences such as geometrical confinement and electromagnetic forces. Geometrical confinement, for example, has been used to design quasi two-dimensional materials such as multi-layered structures of spheres, dimers, rods, spherical caps, and monolayers of platelets with various geometries and symmetries. In this dissertation, we present three computer simulations studies using Monte Carlo and Molecular Dynamics simulations determining the self-assembly of monolayer colloidal platelets with different shapes confined in two dimensions. These particles have been selected due to recent experiments in colloidal particles with similar shapes. All the particles' models are represented by planar polygons, and three different effects affecting their self-assembly have been analysed: (a) the curvature of the particles' vertices; (b) the curvature of the particles' edges; and finally (c) the addition of functional groups on the particles' surface. These studies aim to demonstrate that the subtle changes on the particle's shape can be used to engineer complex patterns for the fabrication of advanced materials. Monte Carlo simulations are performed to study the self-assembly of colloidal platelets with rounded corners with 4, 5, and 6-fold symmetries. Square platelets provide a rich phase behaviour that ranges between disorder-order and order-order phase transitions. Suprisingly, the disk-like shape of pentagons and hexagons prevents the total crystallisation of these systems, even at a high pressure state. A hysteresis gap is observed by the analysis of compression and expansion runs for the case of square platelets and the thermodynamic method known as direct coexistence method is used to be accurately determined the point of the order-order transition. Further, unexpected results are obtained by performing Molecular Dynamics simulations in systems with platelets with 3, 4, 5, and 6-fold symmetries when all the sides of each polygon are curved. Macroscopic chiral symmetry breaking is observed for platelets with 4 and 6-fold symmetries, and for the first time a rule is promoted to explain when these chiral structures can be formed driven only by packing effects. This unique rule is verified also for platelets with the same curved sides as previously when functional chains tethered to either vertices or sides. Indeed, square platelets with curved sides confined in two dimensions can form chiral structures at medium densities when flexible chains tethered to either vertices or sides. Triangular platelets with curved sides can form chiral structures only when the chains are tethered to the corners, since the chains experience an one-hand rotation to sterically protect one side. When the chains are symmetrically tethered to the sides, local chiral symmetry breaking is observed as both left-hand and right-hand sides on each vertex are sterically protected allowing the same probability for rotation either in clockwise or anticlockwise direction.
4

Perturbative perspectives on the Phase diagram of Quantum ChromoDynamics / Points de vue perturbatifs sur le diagramme de phases de la chromodynamique quantique

Maelger, Jan 10 October 2019 (has links)
L'étude du diagramme des phases de la Chromodynamique Quantique (QCD) et des transitons associées (déconfinement et restoration de la symétrie chirale) représentent des défis majeurs de la Physique moderne et nombreuses sont les approches théoriques qui visent à en sonder les multiples facettes. Du fait de l'intensité de l'interaction forte dans les régimes d’énergie pertinents pour les transitions susmentionnées, ces approches sont en général de nature non-perturbative, la théorie des perturbations étant réputée inapplicable à ces échelles. Il est, cependant, bien établi que le point de départ de la théorie usuelle des perturbations, basée sur la procédure de fixation de jauge de Faddeev-Popov, est ambigu à ces échelles (ambiguïté de Gribov). Dans ce contexte, une approche perturbative modifiée, basée sur le Lagrangien de Curci et Ferrari, a été proposée, via l’ajout phénoménologique d'un terme de masse effectif pour le gluon en jauge de Landau. Cette approche a été testée avec succès, notamment dans sa capacité à reproduire les fonctions de corrélation de la théorie Yang-Mills (et QCD dans la limite de quarks lourds) et la thermodynamique à temperature et potentiel chimique non nuls.Dans cette thèse, nous avons testé la robustesse de ces résultats en évaluant la structure de phase de la QCD avec quarks lourds au deuxième ordre de la théorie des perturbations dans le modèle de Curci-Ferrari et en comparant nos résultats à ceux d'approches nonperturbatives. Nos résultats indiquent que, dans ce régime de quarks lourds, le diagramme de phases est contrôlée perturbativement. Nous avons égalementétendu notre étude au cas de la QCD avec quarks légers en utilisant un schéma de resommation qui exploite la présence de petits paramètres dans le régime infrarouge de la QCD. Dans le secteur des quarks, cette démarche donne lieu à la resommation des fameux diagrammes dits "arc-en-ciel”. Ici, nous généralisons ce formalisme à temperature et densité non nulles et en presence d'un champ de fond gluonique. Nous réalisons une toute première étude qualitative des prédictions du modèle CF concernant l’existence possible d’un point critique dans le diagramme de phases de QCD sur la base d’une version simplifiée des équations générales ainsi obtenues. / Unravelling the structure of the QCD phase diagram and its many aspects such as (de)confinementand chiral symmetry breaking, is one of the big challenges of modern theoretical physics, and manyapproaches have been devised to this aim. Since perturbation theory is believed to cease feasibilityat low energy scales, these approaches treat the relevant order parameters, the quark condensate andthe Polyakov loop, non-perturbatively. However, it is also well-established that the starting point forperturbation theory, the Fadeev-Popov gauge-fixing procedure, is inherently ill-defined in the infrareddue to the presence of Gribov ambiguities. In this context, a modified perturbative approach based onthe Curci-Ferrari Lagrangian has been introduced, where a phenomenologically motivated effective gluonmass term is added to the Landau gauge-fixed action. Prior to the beginning of the thesis, this approach hasproven extremely fruitful in its descriptions of (unquenched) Yang-Mills correlation functions and thermodynamics at (non)zero temperature and density.Throughout the thesis we extend this analysis to the entire phase structure of QCD and QCD-liketheories and test the validity of the model in various regimes of interest. For instance, to further aprevious one-loop study in the regime of heavy quark masses, we have computed the two-loop quarksunset diagram in the presence of a non-trivial gluon background in a finite temperature and densitysetting. We come to the conclusion that the physics underlying center symmetry is well-described by our perturbative model with a seemingly robust weak-coupling expansion scheme. Furthermore, we study the regime of light quarks by means of a recently proposed resummation scheme which exploits the presence of actual small parameters in the Curci-Ferrari description of infrared QCD. In the quark sector, this leads to the renown rainbow equations. We extend this first-principle setup to nonzero temperature, chemical potential, and gluon background. We perform a first qualitative analysis of the prediction of the model concerning the possible existence of a critical endpoint in the QCD phase diagram by using a simplified version of these general equations.
5

Teoria quântica de campos para férmions interagentes no plano a temperatura e potencial químico finitos, na presença de um campo magnético externo oblíquo / Quantum field theory for interacting planar fermions at finite temperature and chemical potential, in the presence of an external oblique magnetic field

Pedro Henrique Amantino Manso 01 December 2011 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Neste trabalho, os efeitos de um campo magnético oblíquo externo no modelo de Gross- Neveu (2+1)-dimensional, que inclui as componentes paralela e perpendicular do campo em relação ao sistema, são estudados no contexto da simetria quiral e discreta do modelo. Nosso principal interesse está nos efeitos deste campo sobre o diagrama de fase do sistema, onde também incluímos os efeitos combinados de temperatura e potencial químico. Os diagramas de fase são obtidos através do potencial efetivo a 1 loop para o modelo, derivado em primeira ordem na expansão 1=N. Transições de fase relevantes que podem ser estudadas através deste modelo são, por exemplo, metal-isolante em matéria condensada e na teoria quântica de campos de férmions planares em geral. A relação entre a transição de fase com quebra da simetria quiral e discreta e o surgimento de um gap (ou a presença de um valor esperado no vácuo do campo escalar diferente de zero), como função do campo magnético oblíquo, é analisada em detalhes. / In this work, the effects of an external oblique magnetic field in the (2+1)-dimensional Gross-Neveu model, and that therefore includes both parallel and perpendicular components of the applied field, are studied in the context of the models discrete chiral symmetry. Our main concern is in the effects of such a field in the systems phase diagram and that also includes the combined effects of temperature and chemical potential. The phase diagrams are obtained through the one-loop effective potential for the model, derived in the leading order in the 1=N expansion Relevant phase transitions that can be studied through this model are, for example, metal-insulator ones in condensed matter and in the quantum field theory of planar fermions in general. The relation between the phase transition with (discrete) chiral symmetry breaking and the emergence of a gap (or the presence of a chiral nonvanishing vacuum expectation value) in the planar fermionic system, as a function of the external oblique magnetic field, is analyzed in details.
6

Teoria quântica de campos para férmions interagentes no plano a temperatura e potencial químico finitos, na presença de um campo magnético externo oblíquo / Quantum field theory for interacting planar fermions at finite temperature and chemical potential, in the presence of an external oblique magnetic field

Pedro Henrique Amantino Manso 01 December 2011 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Neste trabalho, os efeitos de um campo magnético oblíquo externo no modelo de Gross- Neveu (2+1)-dimensional, que inclui as componentes paralela e perpendicular do campo em relação ao sistema, são estudados no contexto da simetria quiral e discreta do modelo. Nosso principal interesse está nos efeitos deste campo sobre o diagrama de fase do sistema, onde também incluímos os efeitos combinados de temperatura e potencial químico. Os diagramas de fase são obtidos através do potencial efetivo a 1 loop para o modelo, derivado em primeira ordem na expansão 1=N. Transições de fase relevantes que podem ser estudadas através deste modelo são, por exemplo, metal-isolante em matéria condensada e na teoria quântica de campos de férmions planares em geral. A relação entre a transição de fase com quebra da simetria quiral e discreta e o surgimento de um gap (ou a presença de um valor esperado no vácuo do campo escalar diferente de zero), como função do campo magnético oblíquo, é analisada em detalhes. / In this work, the effects of an external oblique magnetic field in the (2+1)-dimensional Gross-Neveu model, and that therefore includes both parallel and perpendicular components of the applied field, are studied in the context of the models discrete chiral symmetry. Our main concern is in the effects of such a field in the systems phase diagram and that also includes the combined effects of temperature and chemical potential. The phase diagrams are obtained through the one-loop effective potential for the model, derived in the leading order in the 1=N expansion Relevant phase transitions that can be studied through this model are, for example, metal-insulator ones in condensed matter and in the quantum field theory of planar fermions in general. The relation between the phase transition with (discrete) chiral symmetry breaking and the emergence of a gap (or the presence of a chiral nonvanishing vacuum expectation value) in the planar fermionic system, as a function of the external oblique magnetic field, is analyzed in details.

Page generated in 0.0931 seconds