• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 42
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Mathematical modelling and experimental simulation of chlorate and chlor-alkali cells.

Byrne, Philip January 2001 (has links)
<p>The production of chlorate, chlorine and sodium hydroxiderelies heavily on electrical energy, so that savings in thisarea are always a pertinent issue. This can be brought aboutthrough increased mass transfer of reacting species to therespective electrodes, and through increased catalytic activityand uniformity of current density distribution at theseelectrodes. This thesis will present studies involvingmathematical modelling and experimental investigations of theseprocesses. They will show the effect that hydrodynamicbehaviour has on the total current density and cell voltages,along with the effects on current density distributions andindividual overpotentials atthe respective electrodes.</p><p>Primary, secondary and psuedo-tertiary current densitydistribution models of a chlor-alkali anode are presented anddiscussed. It is shown that the secondary model presentsresults rather similar to the pseudo-tertiary model, when thecurrent density distribution is investigated, although thepotential distribution differs rather markedly. Furthermore, itis seen that an adequate description of the hydrodynamicsaround the anode is required if the potential distribution, andthereby the prevalence of side-reactions, is to be reasonablepredicted.</p><p>A rigorous tertiary current density distribution model ofthe chlorate cell is also presented, which takes into accountthe developing hydrodynamic behaviour along the height of thecell. This shows that an increased flowrate gives more uniformcurrent density distributions. This is due to the fact that theincreased vertical flowrate of electrolyte replenishes ioncontent at the electrode surfaces, thus reducing concentrationoverpotentials. Furthermore, results from the model lead to theconclusion that it is the hypochlorite ion that partakes in themajor oxygen producing side-reaction.</p><p>A real-scale cross-section of a segmented anode-cathode pairfrom a chlorate cell was designed and built in order to studythe current density distribution in industrial conditions.These experiments showed that increased flowrate brought aboutmore even current density distributions, reduced cell voltageand increased the total current density. An investigation ofthe hydrodynamic effects on the respective electrodeoverpotentials shows the anode reactions being more favoured byincreased flowrate. This leads to the conclusion that theuniform current density distribution, caused by increasedflowrate, occurs primarily through decreasing the concentrationoverpotential at the anode rather than by decreasing thebubble-induced ohmic drop at the cathode.</p><p>Finally, results from experiments investigating thebubble-induced free convection from a small electrochemicalcell are presented. These experiments show that Laser DopplerVelocimetry is the most effective instrument for investigatingthe velocity profiles in bubble-containing electrochemicalsystems. The results also show that the flow can transform fromlaminar to turbulent behaviour on both the vertical andhorizontal planes, in electrochemical systems where bubbles areevolved.</p>
22

Critical potential and oxygen evolution of the chlorate anode

Nylén, Linda January 2006 (has links)
<p>In the chlorate process, natural convection arises thanks to the hydrogen evolving cathode. This increases the mass transport of the different species in the chlorate electrolyte. There is a strong connection between mass transport and the kinetics of the electrode reactions. A better knowledge about these phenomena and their interactions is desirable in order to understand e.g. the reasons for deactivation of anode coatings and what process conditions give the longest lifetime and the highest efficiency.</p><p>One of the aims of his work was to understand how the chlorate process has to be run to avoid exceeding the critical anode potential (<em>E</em><sub>cr</sub>) in order to keep the potential losses low and to achieve a long lifetime of the DSAs. At <em>E</em><sub>cr</sub> anodic polarisation curves in chlorate electrolyte bend to higher Tafel slopes, causing increasing potential losses and accelerated ageing of the anode. Therefore the impact on the anode potential and on <em>E</em><sub>cr</sub> of different electrolyte parameters and electrolyte impurities was investigated. Additionally, the work aimed to investigate the impact of an addition of chromate on oxygen evolution and concentration profiles under conditions reminiscent of those in the chlorate process (high ionic strength, 70 °C, ruthenium based DSA, neutral pH), but without chloride in order to avoid hypochlorite formation. For this purpose a model, taking into account mass transport as well as potential- and concentration-dependent electrode reactions and homogeneous reactions was developed. Water oxidation is one of the side reactions considered to decrease the current efficiency in chlorate production. The results from the study increase the understanding of how a buffer/weak base affects a pH dependent electrode reaction in a pH neutral electrolyte in general. This could also throw light on the link between electrode reactions and homogeneous reactions in the chlorate process.</p><p>It was found that the mechanism for chloride oxidation is likely to be the same for potentials below <em>E</em><sub>cr</sub> as well as for potentials above <em>E</em><sub>cr</sub>. This was based on the fact that the apparent reaction order as well as α<sub>a</sub> seem to be of the same values even if the anode potential exceeds<em> E</em><sub>cr</sub>. The reason for the higher slope of the polarisation curve above <em>E</em><sub>cr</sub> could then be a potential dependent deactivation of the active sites. Deactivation of active ruthenium sites could occur if ruthenium in a higher oxidation state were inactive for chloride oxidation.</p><p>Concentration gradients of H<sup>+</sup>, OH<sup>-,</sup> CrO<sub>4</sub> <sup>2-</sup> and HCrO<sub>4</sub> <sup>- </sup>during oxygen evolution on a rotating disk electrode (RDE) were predicted by simulations. The pH dependent currents at varying potentials calculated by the model were verified in experiments. It was found that an important part of the chromate buffering effect at high current densities occurs in a thin (in the order of nanometers) reaction layer at the anode. From comparisons between the model and experiments a reaction for the chromate buffering has been proposed. Under conditions with bulk pH and chromate concentration similar to those in the chlorate process, the simulations show that the current density for oxygen evolution from OH<sup>-</sup> would be approximately 0.1 kA m<sup>-2</sup>, which corresponds to about 3% of the total current in chlorate production.</p>
23

The Classical Nucleation Model : Entire Process of Crystal Growth and Application to Chirality Conversion

Uwaha, Makio 07 1900 (has links)
14th International Summer School on Crystal Growth ( 1–7 August 2010, Dalian (China))
24

ELECTROANALYTICAL PAPER-BASED SENSORS FOR IN-FIELD DETECTION OF CHLORATE-BASED EXPLOSIVES AND QUANTIFICATION OF OXYANIONS

Carolina Guimaraes Vega (15339037) 18 May 2023 (has links)
<p> </p> <p><em>Improvised explosive devices (IEDs) are a global threat due to their destructive potential, the easy access to raw materials, and online instructions to manufacture them. These circumstances have led to an increase in the number of IEDs using potassium chlorate as an oxidizer. The standard methods to detect chlorate are mainly designed for laboratory-only testing. Thus, field instrumentation capable of detecting oxidizers from explosives fuel-oxidizers is critical for crime scene investigation and counterterrorism efforts (described in Chapter 1). We developed a paper-based sensor for the in-field detection of chlorate (described in Chapter 2). The sensor is low-cost, disposable, portable, and inexpensive to fabricate, and its flexibility features allow for surface sampling without sample destruction. The sensor has an electrodeposited molybdate sensing layer, as chlorate was reported to have a catalytic effect on the molybdate reduction. The chlorate detection relies on monitoring the change in redox activity of the molybdate sensing layer using different electroanalytical techniques. We effectively demonstrated the analytical performance of the sensor (Chapter 3), obtaining a limit of detection of 1.2 mM and a limit of quantification of 4.10 mM. We evaluated the selectivity of the sensor by testing other oxidizers, such as perchlorate and nitrate, which did not present any electrochemical activity with the molybdate sensing layer.</em></p> <p><em>Additionally, we performed an interferent study with sugar, commonly used as fuel in IEDs, and other common white household powders such as baking soda, flour, and corn starch and neither a false positive nor a false negative result was observed (Chapter 3). As bromate has been reported to have a stronger catalytic effect than chlorate on the redox activity of molybdate, the quantification of bromate was also explored, and a bromate sensor was developed using the findings of the chlorate sensor (Chapter 4). The reaction mechanism involved in the molybdate</em></p> <p><em>reduction was explored and discussed in Chapter 5. The capability of the sensor in detecting chlorate from combusted samples and post-blast samples was successfully demonstrated in Chapter 6, as well as the design of encased prototypes to allow for an in-field presumptive test, storage, and transport for in-laboratory confirmatory tests and compared the performance of the sensor to the available commercial tests.</em></p>
25

Critical potential and oxygen evolution of the chlorate anode

Nylén, Linda January 2006 (has links)
In the chlorate process, natural convection arises thanks to the hydrogen evolving cathode. This increases the mass transport of the different species in the chlorate electrolyte. There is a strong connection between mass transport and the kinetics of the electrode reactions. A better knowledge about these phenomena and their interactions is desirable in order to understand e.g. the reasons for deactivation of anode coatings and what process conditions give the longest lifetime and the highest efficiency. One of the aims of his work was to understand how the chlorate process has to be run to avoid exceeding the critical anode potential (Ecr) in order to keep the potential losses low and to achieve a long lifetime of the DSAs. At Ecr anodic polarisation curves in chlorate electrolyte bend to higher Tafel slopes, causing increasing potential losses and accelerated ageing of the anode. Therefore the impact on the anode potential and on Ecr of different electrolyte parameters and electrolyte impurities was investigated. Additionally, the work aimed to investigate the impact of an addition of chromate on oxygen evolution and concentration profiles under conditions reminiscent of those in the chlorate process (high ionic strength, 70 °C, ruthenium based DSA, neutral pH), but without chloride in order to avoid hypochlorite formation. For this purpose a model, taking into account mass transport as well as potential- and concentration-dependent electrode reactions and homogeneous reactions was developed. Water oxidation is one of the side reactions considered to decrease the current efficiency in chlorate production. The results from the study increase the understanding of how a buffer/weak base affects a pH dependent electrode reaction in a pH neutral electrolyte in general. This could also throw light on the link between electrode reactions and homogeneous reactions in the chlorate process. It was found that the mechanism for chloride oxidation is likely to be the same for potentials below Ecr as well as for potentials above Ecr. This was based on the fact that the apparent reaction order as well as αa seem to be of the same values even if the anode potential exceeds Ecr. The reason for the higher slope of the polarisation curve above Ecr could then be a potential dependent deactivation of the active sites. Deactivation of active ruthenium sites could occur if ruthenium in a higher oxidation state were inactive for chloride oxidation. Concentration gradients of H+, OH-, CrO4 2- and HCrO4 - during oxygen evolution on a rotating disk electrode (RDE) were predicted by simulations. The pH dependent currents at varying potentials calculated by the model were verified in experiments. It was found that an important part of the chromate buffering effect at high current densities occurs in a thin (in the order of nanometers) reaction layer at the anode. From comparisons between the model and experiments a reaction for the chromate buffering has been proposed. Under conditions with bulk pH and chromate concentration similar to those in the chlorate process, the simulations show that the current density for oxygen evolution from OH- would be approximately 0.1 kA m-2, which corresponds to about 3% of the total current in chlorate production. / QC 20101122
26

Treatment of Microcontaminants in Drinking Water

Srinivasan, Rangesh 14 August 2009 (has links)
No description available.
27

Nanoscaled Structures in Ruthenium Dioxide Coatings

Malmgren, Christine January 2009 (has links)
<p>An essential ingredient in the generation of environmentally compatible pulp bleaching chemicals is sodium chlorate. Chlorate is produced in electrochemical cells, where the electrodes are the key components. In Sweden the so-called DSA !R electrodes with catalytic coatings have been produced for more than 35 years. The production of chlorate uses a large amount of electric energy, and a decrease of just five percent of this consumption would, globally, decrease the consumption of electrical energy corresponding to half a nuclear power reactor. The aim of this project is to improve the electrode design on the nanoscale to decrease the energy consumption. The success of the DSA!R depends on the large catalytic area of the coating, however, little is known about the actual structure at the nanometer level. To increase the understanding of the nanostructure of these coatings, we used a number of methods, including atomic force microscopy, transmission electron microscopy, X-ray diffraction, porosimetry, and voltammetric charge. We found that the entire coating is built up of loosely packed rutile mono-crystalline 20 − 30 nm sized grains. The small grain sizes give a the large area, and consequently, lower cell-voltage and reduced energy consumption. A method to control the grain size would thus be a way to control the electrode efficiency. To alter the catalytically active area, we made changes in the coating process parameters. We found a dependency of the crystal-grain sizes on the choice of ruthenium precursor and processing temperature. The use of ruthenium nitrosyl nitrate resulted in smaller grains than ruthenium chloride and lowering the temperature tended to favour smaller grains. A more radical way would be to create a totally different type of electrode, manufactured in another way than using the 1965 DSA !R recipe. Such new types of electrodes based on, for example, nanowires or nanoimprint lithography, are discussed as future directions.</p>
28

Influence of the electrolyte on the electrode reactions in the chlorate process

Nylén, Linda January 2008 (has links)
The chlorate process is very energy intensive and a major part of the production costs are for electrical energy. Since the electricity prices are constantly increasing and may also vary periodically, the chlorate plants may be forced to adjust their production rate to the price at each moment in order to minimise their costs. Variation of current load requires increased knowledge regarding the electrode behaviour in a wide current range. In this thesis, the aim was to study the impact of the electrolyte on the electrode reactions in order to reduce the energy consumption. The work has mainly been experimental and additionally mathematical modelling has been carried out. A wide current range has been investigated in order to increase the understanding of the phenomena and to obtain results useful for low-load operation during the periods of high electricity cost. To operate the anode as energy efficiently as possible, the anode potential should not exceed the critical potential (Ecr), where the slope of the anodic polarisation curve increases, most likely due to ruthenium(VIII)-formation, and where the side reaction of oxygen evolution increases. In this work, the influence of different electrolyte parameters on Ecr has been studied. It was shown that a higher chloride concentration and an increased temperature lowered Ecr, which was expected to increase the risk of exceeding Ecr. However, this was not observed due to a simultaneous favouring of the chloride oxidation. Hence it was concluded that the electrolyte parameters should be optimised so that the lowest possible anode potential is obtained, which would enable higher current densities without exceeding Ecr. A further conclusion is that the increased slope of the polarisation curve at Ecr was possibly related to the lower activity for chloride oxidation on ruthenium oxidised to ruthenium(VIII). At full-load operation, the cathode potential was shown to be rather independent of the electrolyte composition despite a large variation of electrolyte parameters. The cathode composition appears to be more critical than the electrolyte composition when aiming at reducing the energy consumption. A strategy to increase the cathode activity could be to in situ apply a catalytic film onto the electrode surface. Therefore, Y(III) was added to a chloride electrolyte in order to form a yttrium hydroxide film on the alkaline cathode surface during hydrogen evolution. The yttrium-hydroxide film activated reduction of water (hydrogen evolution) and hindered hypochlorite reduction, proton reduction and nitrate reduction. The inhibiting properties are important for the prevention of side reactions, which currently are avoided by reducing Cr(VI) of the electrolyte on the cathode, producing an inhibiting chromium-hydroxide film. The studies on Y(III) increase the expectations for finding alternatives to the toxic Cr(VI). The addition of chromate to the chlorate electrolyte gives a high cathodic current efficiency and chromate has buffering properties in the electrolyte. The role of the buffer has been investigated for the oxygen evolution from water (one possible anodic side reaction), as well as cathodic hydrogen evolution. Models have been developed for these systems to increase the understanding of the interaction between buffer, electrode reactions and mass transport; the results have been verified experimentally. The chromate buffer increased the limiting current significantly for the cathodic H+ reduction and the cathodic overpotential was reduced drastically at currents lower than the limited current. A too low overpotential could result in the cathodic protection being lost. The presence of chromate buffer increased the limiting current for the oxygen evolution from OH-. The modelling of these systems revealed that the homogeneous reactions connected to the electrode reactions were not in equilibrium at the electrode surface. Further, a good resolution of the interface at the electrode surface was crucial since the, for the electrode reactions, important buffering takes place in an nm-thick reaction layer. / Framställning av klorat är mycket energiintensiv och kräver stora mängder elenergi. Stigande elpriser, som dessutom ofta varierar under dygnet eller säsongsvis, gör att man vill reducera onödiga förluster samt ibland försöka anpassa produktionen så att man när elpriset är högt minskar den, för att sedan öka produktionen igen då elpriset sjunker. Denna flexibla drift kräver ny kunskap om hur elektroderna beter sig i ett större strömintervall än vad som tidigare varit av intresse. Målet med detta arbete var att, med fokus på elektrolytens betydelse, identifiera möjliga förbättringar för kloratprocessen och därmed minska energiförbrukningen. Studierna har i huvudsak varit experimentella men även matematisk modellering har använts. Ett brett strömintervall har undersökts för att bättre förstå fenomenen och för att även kunna använda resultaten då höga elpriser gör att man vill köra processen vid lägre laster än normalt. För att driften av anoden ska vara så energieffektiv som möjligt bör anodpotentialen inte överskrida den kritiska potentialen (Ecr), där den anodiska polarisationskurvan får en högre lutning (troligtvis pga Ru(VIII)-bildning) och bireaktionen syrgasutveckling ökar. I detta arbete har påverkan av olika elektrolytparametrar på Ecr undersökts. Det visade sig att en ökad kloridkoncentration och ökad temperatur sänkte Ecr. Trots att detta borde göra att Ecr lättare överskrids, blev inte detta fallet eftersom kloridoxidationen samtidigt gynnades. Slutsatsen blir därför att elektrolytparametrarna bör optimeras så att lägsta möjliga anodpotential uppnås, vilket då även gör att strömtätheten kan ökas utan att Ecr överskrids. Slutsatsen är vidare att polarisationskurvans högre lutning vid Ecr kan ha att göra med att rutenium oxiderat till rutenium(VIII) har lägre aktivitet för kloridoxidation. Vid full last visade sig katodens potential vara relativt oberoende av elektrolytsammansättningen trots att denna varierades kraftigt. Katodens sammansättning verkar vara viktigare att ta hänsyn till än elektrolytens för kunna åstadkomma en större energibesparing. Ett alternativ till att öka katodens aktivitet skulle vara att in-situ belägga elektrodytan med en katalytisk film. Försök gjordes att sätta till Y(III) till kloridelektrolyt för att under vätgasutveckling fälla ut en yttriumhydroxidfilm på den alkaliska katodytan. Yttriumhydroxidfilmen aktiverade vattenreduktion (vätgasutveckling) och inhiberade hypokloritreduktion, protonreduktion och nitratreduktion. De inhiberande egenskaperna är viktiga för att förhindra bireaktioner, vilka idag hindras av att Cr(VI) i elektrolyten reduceras på katoden och bildar en hindrande kromhydroxidfilm. Försöken med Y(III) visar att det finns goda möjligheter att hitta alternativ till det miljöfarliga Cr(VI). Kromattillsatsen i kloratelektrolyt ger förutom ett högt katodiskt strömutbyte även en buffrande effekt till elektrolyten. Effekten av buffert har undersökts för en av de anodiska bireaktionerna, syrgasutveckling ur vatten, samt för vätgasutvecklingen på katoden. Dessa system har modellerats för att bättre förstå samspelet mellan buffert, elektrodreaktioner och materietransport och resultaten har verifierats experimentellt. Kromatbufferten ökade gränsströmmen för katodisk H+-reduktion betydligt och katodöverpotentialen sjönk kraftigt vid lägre strömmar än gränsströmmen. Detta kan vara ett problem om överpotentialen sjunker så lågt att elektroden inte är katodiskt skyddad. För syrgasutvecklingen ökade närvaron av kromatbuffert gränsströmmen för syrgasutveckling ur OH-. Modellering av dessa system visar att de homogena reaktioner som var kopplade till elektrodreaktionerna inte var i jämvikt vid elektrodytan. Vidare visade det sig vara mycket viktigt med en bra upplösning av gränsskiktet vid elektrodytan, då den buffring som är viktig för elektrodreaktionerna sker i ett mycket tunt reaktionsskikt (nanometertjockt). / <p>QC 20100901</p>
29

In-situ activated hydrogen evolution from pH-neutral electrolytes

Gustavsson, John January 2012 (has links)
The goal of this work was to better understand how molybdate and trivalent cations can be used as additives to pH neutral electrolytes to activate the Hydrogen Evolution Reaction (HER). Special emphasis was laid on the chlorate process and therefore also to some of the other effects that the additives may have in that particular process. Cathode films formed from the molybdate and trivalent cations have been investigated with electrochemical and surface analytical methods such as polarization curves, potential sweep, Electrochemical Impedance Spectroscopy (EIS), current efficiency measurements, Scanning Electron Microscope (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS), X-Ray Fluorescence (XRF) and Inductively Coupled Plasma (ICP) analysis. Trivalent cations and molybdate both activate the HER, although in different ways. Ligand water bound to the trivalent cations replaces water as reactant in the HER. Since the ligand water has a lower pKa than free water, it is more easily electrochemically deprotonated than free water and thus catalyzes the HER. Sodium molybdate, on the other hand, is electrochemically reduced on the cathode and form films which catalyze the HER (on cathode materials with poor activity for HER). Molybdate forms films of molybdenum oxides on the electrode surface, while trivalent cation additions form hydroxide films. There is a risk for both types of films that their ohmic resistance increases and the activity of the HER decreases during their growth. Lab-scale experiments show that for films formed from molybdate, these negative effects become less pronounced when the molybdate concentration is reduced. Both types of films can also increase the selectivity of the HER by hindering unwanted side reactions, but none of them as efficiently as the toxic additive Cr(VI) used today in the chlorate process. Trivalent cations are not soluble in chlorate electrolyte and thus not suitable for the chlorate process, whereas molybdate, over a wide pH range, can activate the HER on catalytically poor cathode materials such as titanium. / Målsättningen med detta doktorsarbete har varit att bättre förstå hur trivalenta katjoner och molybdat lösta i elektrolyten kan effektivisera elektrokemisk vätgasproduktion. Tillämpningen av dessa tillsatser i kloratprocessen och eventuella sidoeffekter har undersökts. De filmer som bildas på katoden av tillsatserna har undersökts med både elektrokemiska och fysikaliska ytanalysmetoder: polarisationskurvor, potentialsvep, elektrokemisk impedansspektroskopi (EIS), strömutbytesmätningar, svepelektronmikroskopi (SEM), energidispersiv röntgenspektroskopi (EDS), röntgenfotoelektronspektroskopi (XPS), röntgenfluorensens (XRF) och induktivt kopplat plasma (ICP). Både trivalenta katjoner och molybdat kan aktivera elektrokemisk vätgasutveckling, men på olika sätt. Vatten bundet till trivalenta katjoner ersätter fritt vatten som reaktant vid vätgasutveckling. Eftersom vatten bundet till trivalenta katjoner har lägre pKa-värde, går det lättare att producera vätgas från dessa komplex än från fritt vatten. Natriummolybdat däremot reduceras på katoden och bildar filmer som kan katalysera vätgasutvecklingen på substratmaterial som har låg katalytisk aktivitet för reaktionen. Molybdat bildar molybdenoxider på ytan medan trivalenta katjoner bildar metallhydroxider. Båda typerna av film riskerar att bilda filmer som är resistiva och deaktiverar vätgasutvecklingen. Laboratorieexperiment visar att problemen minskar med minskad molybdathalt. Båda filmerna kan öka selektiviteten för vätgasutveckling genom att hindra sidoreaktioner. Filmerna är dock inte lika effektiva som de filmer som bildas från den ohälsosamma tillsatsen Cr(VI), vilken används i kloratprocessen idag. Trivalenta katjoner är inte lösliga i kloratelektrolyt och är därför inte en lämplig tillsats i kloratprocessen. Molybdat har god löslighet och kan aktivera vätgasutveckling i ett stort pH‑intervall på titan och andra substratmaterial som själva har betydlig sämre aktivitet för vätgasutveckling. / <p>QC 20120530</p> / c6839
30

Zur Herstellung der Erdalkalimetallchlorate und zu den Lösungsgleichgewichten in den reziproken Salzpaaren MCl2 + 2NaClO3 = M(ClO3)2 + 2NaCl/H2O (M = Mg2+, Ca2+, Sr2+, Ba2+)

Supriatna, Asep 28 July 2009 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit Untersuchungen zur Herstellung der Erdalkalimetallchlorate und zu den Lösungsgleichgewichten in den reziproken Salzpaaren MCl2 + 2NaClO3 = M(ClO3)2 + 2NaCl/H2O (M = Mg2+, Ca2+, Sr2+, Ba2+) bei 25°C, 50°C und 75°C. Neben den Löslichkeiten und Bodenkörperparagenesen sind die Dichten und Viskositäten bestimmt worden. Auf der Basis der erarbeiten Daten erfolgte die Bilanzierung der Herstellungsprozesse der Erdalkalimetallchlorate durch reziproke Umsetzung. Zusammenfassend kann eingeschätzt werden, dass mit etwa 0,2 bis 0,5 kg wasserfreies Chlorat pro kg Umlauflösung durchaus effektive Prozesse der polythermen reziproken Umsetzung vorliegen. Über die IR- und Raman-Spektroskopie und die Thermoanalyse wurden die Erdalkalimetallchlorate bzw. Erdalkalimetallchlorat-Hydrate näher charakterisiert, u.a. bezüglich ihres Zersetzungsverhaltens bis zum Erdalkalimetallchlorid.

Page generated in 0.0617 seconds