• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 20
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A Study on Photocatalytic Oxidation of Aqueous Chlorobenzene Solution by Nanostructured Film of TiO2

Cheng, Jen-hao 07 September 2004 (has links)
In This study a thin film of nanometric TiO2 was sol-gel prepared and used for heterogeneous photocatalytic reaction to treat chlorobenzene in testing solution and to evaluate its removal efficiency. Conventionally, the material of photocatalyst was mainly fabricated in form of powder used in the suspension system. Although TiO2 powder has a high specific surface area for heterogeneous photocatalysis, it still leaves a great number of suspended solids in solution awaiting proper handling after the treatment is completed. Also, such suspended solids would pose ¡§shielding¡¨ effect from UV light, and thus affected the efficiency of photocatalytic degradation. To overcome this drawback, a proper mesh size of stainless steel webnet was first selected as a treatment substrate and TiO2 dip-coated, followed by calcination at 500¢J. The end product was used as the TiO2 photocatalytic film for this study. The film of TiO2, verified as anatase type of crystal lattice by XRD and SEM, contained particle sizes ranging from 10 to 20 nm. A solution containing chlorobenzene was used in the study to assess the extent of photocatalytic degradation by UV/TiO2 film. The test was to evaluate the effects of the number of dip-coating and calcining (thickness), initial pH, UV light intensity (@365 nm), and applied electric voltage on photocatalytic removal of chlorobenzene in the solution. The test results indicated that TiO2 film was capable of degrading chlorobenzene; however, enhancement of the degradation efficiency was found to be needed. It was also found that the degradation rate of chlorobezene increased with an increasing thickness of the film and UV light intensity. The pH of test solution was found to be insensitive to degradation of chlorobenzene, probably due to its non-dissociation nature. It was found that electric voltage exerted was unable to prevent electrons and holes from re-combining, and a negative effect of external voltage was even observed. Therefore, it was believed that voltage exertion was not beneficial to phtocatalysis in this study. Kinetics of the tests in this study assumed a pseudo-first-order reaction, which resulted in a rate constant k' = 1.3¡Ñ10-5¡]min-1¡^. The reaction rate was found to be proportional to the 0.7507 order of UV light intensity.
12

Photochemical Degradation of Chlorobenzene

Sycz, Mateusz 30 April 2013 (has links)
Persistent organic pollutants (POPs) are organic compounds of anthropogenic origin that have been linked to the development of cancer, neurobehavioural impairment, and immune system biochemical alterations. These chemicals have various industrial applications as well as acting as pesticides. Dioxins and furans are some of these compounds that are unintentionally produced in combustion and industrial processes. By definition these compounds have 4 common qualities: they are highly toxic, they are resistant to environmental degradation, they are introduced into the air and water where they travel long distances, and they accumulate in fatty tissues. Photochemical degradation is a method that has been extensively researched in the last few decades. In the aqueous phase it has already been shown to be able to degrade a number of refractory organics, such as dioxins and furans. The ultimate products of this process tend to be carbon dioxide, water, and mineral anions. Air phase work has been also gaining attention in recent decades as a possible alternative to incineration methods in air pollution control. The advantages of photochemical degradation processes are that they can be initiated at low temperatures, are relatively low cost compared to incineration processes, environmentally benign, and have the potential for quick and complete degradation of organic compounds. The main aim of the research is to investigate the photochemical degradation potential of PCDD/ PCDFs in gaseous air streams as a potential air pollution control technology. In order to do this, the photodegradation reaction kinetics were determined for chlorobenzene as a suitable surrogate for PCDD/PCDFs. Three different photodegradation schemes were employed: direct photolysis, UV/O3, and UV/H2O2. In addition, ozonolysis reaction rates were also determined to evaluate the effects of on the overall photodegradation rates for the UV/O3 process. Factors such as humidity levels and temperature were investigated to determine their effects on degradation rates. Temperature and humidity were not greatly influential on the degradation rates of direct photolysis. The degradation rate of chlorobenzene at a temperature of 100°C and high humidity was noticeably reduced, but unchanged at the 10% RH and 60% RH levels for all temperatures. Ozonolysis of chlorobenzene was negligible at 30°C for all humidity levels. Ozonolysis reactions at the 60°C and 100°C levels were higher than direct photolysis rates and in the 100°C case exceeded the UV/O3 degradation rates. Ozone coupled with UV experiments proved to be the most destructive at the low temperature of 30°C and molar ratio of 10:1 ozone to chlorobenzene. There was a clear and positive relationship between the amount of ozone present in the reactor and the degradation rate. At lower ozone to chlorobenzene molar ratios the degradation rates were not much higher than those for direct photolysis of ozone. The 5:1 molar ratio saw a significant increase in degradation rates over the photolysis rates. The fastest degradation rate was achieved for the 10:1 molar ratio and high humidity, which was over 10 times the rate of direct photolysis. In addition, humidity had a noticeably significant positive effect in these reactions. The effect of temperature on the UV/ozone reaction scheme was determined for the 5:1 ozone to chlorobenzene ratio. Temperature had an interesting effect on the degradation rates at higher temperatures. As the reactor temperature increased, the degradation rates from ozonolysis and UV/O3 began to converge at 60°C, ultimately leading to the ozonolysis reaction being faster than the UV/O3. Exploratory experiments for the H2O2 scheme were performed. H2O2 had a positive influence on the degradation rate of chlorobenzene and was about 26% higher than the direct photolysis rates. However for similar conditions, the UV/O3 process had higher degradation rates as was expected from the difference in absorption values between ozone and hydrogen peroxide.
13

CATALYTIC GROWTH OF STRUCTURED CARBON via THE DECOMPOSITION OF HALOGENATED REACTANTS OVER SUPPORTED NICKEL

Cherukuri, Laxmi Deepshika 01 January 2007 (has links)
The synthesis of highly ordered carbonaceous materials, including carbon nanofibers, has been the subject of a disparate and burgeoning literature over the past decade. Growth of carbon nanotubes via an atypical catalytic route, the decomposition of halogenated reactants as chlorobenzene (CB) over 10% (w/w) Ni/SiO2 is investigated. The C (carbon) yield and structural order are a function of reaction time and temperature. Greater degree of structural order and C yield is observed from CB relative to benzene, suggesting Cl/catalyst interaction(s) and metal site restructuring. Evaluation of the effect of H2 on C growth from CB reveals that C yield is sensitive to % (v/v) H2 with selectivity maxima at 40% (v/v) H2. Further, C yield is significantly influenced by the nature of the heteroatom substituent on the benzene ring; presence of strong electron withdrawing groups favors C yield and weak electron withdrawing or donating groups favors competing side reactions. The effect of the strong electron withdrawing group, Cl, varies with the chemical structure of the carbon source. Presence of Cl promotes C yield in the case of aromatic and straight chained (aliphatic) compounds whereas it promotes formation of benzene in the case of cyclic (aliphatic) compounds. Results are interpreted in term of substituent/ catalyst interaction and the mechanism of solid C formation. Further, effect of % (v/v) H2 on C growth characteristics varies significantly with the precursor. The C growth characteristics are strongly dependent on the nature of the support used, as demonstrated for the following supports: SiO2, Ta2O5, Al2O3, NaY, activated carbon and graphite at 10% (w/w) Ni loading. Ni/SiO2 results in maximum C yield. Variation in Ni loading significantly influences the C yield; higher loading favors greater C yield. C grown on Ni/NaY was found to be relatively more structured to C obtained on the other supports. EDX analysis of the carbon product was used to assess the possibility of Cl intercalation and it reveals presence of 0.4 at% Cl on carbon grown on Ni/Al2O3.
14

Photochemical Degradation of Chlorobenzene

Sycz, Mateusz 30 April 2013 (has links)
Persistent organic pollutants (POPs) are organic compounds of anthropogenic origin that have been linked to the development of cancer, neurobehavioural impairment, and immune system biochemical alterations. These chemicals have various industrial applications as well as acting as pesticides. Dioxins and furans are some of these compounds that are unintentionally produced in combustion and industrial processes. By definition these compounds have 4 common qualities: they are highly toxic, they are resistant to environmental degradation, they are introduced into the air and water where they travel long distances, and they accumulate in fatty tissues. Photochemical degradation is a method that has been extensively researched in the last few decades. In the aqueous phase it has already been shown to be able to degrade a number of refractory organics, such as dioxins and furans. The ultimate products of this process tend to be carbon dioxide, water, and mineral anions. Air phase work has been also gaining attention in recent decades as a possible alternative to incineration methods in air pollution control. The advantages of photochemical degradation processes are that they can be initiated at low temperatures, are relatively low cost compared to incineration processes, environmentally benign, and have the potential for quick and complete degradation of organic compounds. The main aim of the research is to investigate the photochemical degradation potential of PCDD/ PCDFs in gaseous air streams as a potential air pollution control technology. In order to do this, the photodegradation reaction kinetics were determined for chlorobenzene as a suitable surrogate for PCDD/PCDFs. Three different photodegradation schemes were employed: direct photolysis, UV/O3, and UV/H2O2. In addition, ozonolysis reaction rates were also determined to evaluate the effects of on the overall photodegradation rates for the UV/O3 process. Factors such as humidity levels and temperature were investigated to determine their effects on degradation rates. Temperature and humidity were not greatly influential on the degradation rates of direct photolysis. The degradation rate of chlorobenzene at a temperature of 100°C and high humidity was noticeably reduced, but unchanged at the 10% RH and 60% RH levels for all temperatures. Ozonolysis of chlorobenzene was negligible at 30°C for all humidity levels. Ozonolysis reactions at the 60°C and 100°C levels were higher than direct photolysis rates and in the 100°C case exceeded the UV/O3 degradation rates. Ozone coupled with UV experiments proved to be the most destructive at the low temperature of 30°C and molar ratio of 10:1 ozone to chlorobenzene. There was a clear and positive relationship between the amount of ozone present in the reactor and the degradation rate. At lower ozone to chlorobenzene molar ratios the degradation rates were not much higher than those for direct photolysis of ozone. The 5:1 molar ratio saw a significant increase in degradation rates over the photolysis rates. The fastest degradation rate was achieved for the 10:1 molar ratio and high humidity, which was over 10 times the rate of direct photolysis. In addition, humidity had a noticeably significant positive effect in these reactions. The effect of temperature on the UV/ozone reaction scheme was determined for the 5:1 ozone to chlorobenzene ratio. Temperature had an interesting effect on the degradation rates at higher temperatures. As the reactor temperature increased, the degradation rates from ozonolysis and UV/O3 began to converge at 60°C, ultimately leading to the ozonolysis reaction being faster than the UV/O3. Exploratory experiments for the H2O2 scheme were performed. H2O2 had a positive influence on the degradation rate of chlorobenzene and was about 26% higher than the direct photolysis rates. However for similar conditions, the UV/O3 process had higher degradation rates as was expected from the difference in absorption values between ozone and hydrogen peroxide.
15

Part I. From the Lab to the Field - Recent Developments in Polymer Coated ATR Sensing for the Determination of Volatile Organic Compounds ; Part II. From the Field to the Lab - Investigating IR Signatures for Remote Sensing Applications

Karlowatz, Manfred 22 June 2004 (has links)
Part I: Successful transition of polymer coated, ATR-FTIR sensor devices from a laboratory environment to real world field applications for detecting and quantifying VOCs in water is shown. Simultaneous, quantitative detection of BTX mixtures in water during enrichment into polymer coated ZnSe ATR elements has been performed. The obtained results showed accurate detection and quantification to the low ppb concentration region. Fiber-optic evanescent field measurement campaigns have been conducted at simulated field conditions during which concentration gradients of various VOCs in the mg/L range have been monitored successfully. The first test of an ATR based, polymer coated sensor system under real world field conditions, the chlorobenzene concentration in groundwater at mg/L levels was determined. An interesting aspect of these measurements was the experimental proof for the dependence of analyte extraction dynamics on the flow conditions of the sample matrix surrounding the extractive polymer membrane. The obtained results demonstrate that MIR evanescent field sensors are suitable for in-situ analysis at real world field conditions for environmental monitoring applications. PART II: Recently, measurements of disturbed soils have shown different spectral contrast in comparison to undisturbed soils. In this work first measurements at controlled laboratory conditions have been performed to investigate individual minerals of the soil matrix and their spectral characteristics under various environmental conditions. ATR spectroscopy has been applied to investigate multi-disperse quartz sand and mono-disperse soda lime glass spheres samples. For the investigation of spectral differences between pristine and disturbed quartz sand, a wetting/drying procedure with subsequent sample aerating has been developed. In addition to established differences in spectral contrast of disturbed and undisturbed soil, a strong spectral shift of absorption features was observed. When probed with s- or p-polarized light, both samples showed strong LO-TO mode splitting. The studies also reveal that the main reason for spectral differences of pristine and disturbed soils is caused by water facilitated changes of the particle size distribution in the probed volume. The presented results advance the variety of spectral characteristics useful for the detection of disturbed soils (i.e. possible landmine sites) with MIR imaging systems.
16

Análise teórica da superfície Si(111)-(7x7)

Mikhail, Hanna Degani 31 July 2007 (has links)
In this work, wecarry out theoretical study of the silicon surface reconstruction (7x7) grown in the [111] direction, denoted by Si(111) (7x7), using the Density Functional Theory formalism, within the Local Density Approximation (LDA) for the exchange correlation term. The interaction with the valence electrons and the core ion (nucleus more core electrons) was described by norm conserving, non local pseudopotential approach, compatible with the LDA. The one electron Kohn Sham equations was solved self consistently, by expanding the one electron functions in terms of linear combination of numerical atomic orbitals. All the calculations were realized using the Siesta computational code. Using the clean surface reconstruction model of Si(111) (7x7), propose by Takayanagi et al.[1, 2], we modeled the surface as a slab, in which the (7x7) unitary cell contained 200 Si atoms distributed in one adatom layer (Si atoms on the topmost layer) and the other four layers, with 49 H atoms used for saturate the dangling bonds of the most internal layer of the slab. The structural analysis of the Si(111) (7x7) reconstructed surface and the electronic structure analysis showed a good agreement with both the experimental and theoretical results disposable, reproducing correctly the band structure, the surface levels and the metallic character of this surface. The obtained energy per surface atom was 1,132 eV with respect to the bulk energy. It was performed the study of the vacancy energy formation of adatoms on this surface. We find an average value of 1,2 eV of a single vacancy formation of adatom the Si(111) (7x7) surface. The analysis of the energy bands made possible to identify the electronic states due to the adatoms dangling bonds. As a first application of the obtained results to the Si(111) (7x7) clean surface, we investigated the possible states of the physisorption of the chlorobenzene molecules on specific sites on the Si(111) (7x7) surface. This study showed that chlorobenzene molecules interact with the surface for distances around 3,0 Å from the adatoms. We also inferred that the triangular faulted subunit sites are energetically most favorable to the adsorption than the correspondent triangular unfaulted subunit sites. We plotted the adsorption energy curve of the chlorobenzene on the corner adatom at the triangular faulted unitary cell (7x7). The equilibrium distance and the adsorption energy obtained was 3,005 Å and 0,161 eV, respectively. The magnitude of this interaction corresponds to a physics adsorption of the chlorobenzene molecule on the Si(111) (7x7) surface. / Neste trabalho, realizamos o estudo teórico da reconstrução (7x7) da superfície de Silício crescida na direção [111], denotada por Si(111) (7x7), utilizando para isto o formalismo da Teoria do Funcional da Densidade, com a Aproximação da Densidade Local (LDA - LocalDensityApproximation) para o termo de troca correlação. A interação entre os elétrons de valência e o íon de caroço (núcleo mais os elétrons de caroço) foi descrita por meio da Teoria dos Pseudopotenciais não locais de norma conservada, compativel com a LDA. As equações de Kohn Sham de um elétron foram resolvidas autoconsistentemente, expandindo as funções de um elétronemtermos de combinação linear de orbitais atômico numéricos, com base double . Todos os cálculos foram realizados utilizando o código computacional Siesta. Utilizando o modelo de reconstrução da superfície livre de Si(111) (7x7), proposto por Takayanagi et al.[1, 2], modelamos a superfície como um slab, cuja célula unitária (7x7) contém 200 átomos de Si distribuidos em uma camada de adatoms (átomos de Si adsorvidos sobre a superfície propriamente dita) e quatro outras camadas, além dos 49 átomos de H usados para saturar as ligações pendentes da camada mais interna ao material. A análise estrutural da superfície reconstruída Si(111) (7x7) e a análise da estrutura eletrônica mostrou ótima concordância tanto com trabalhos experimentais quanto teóricos, reproduzindo corretamente a estrutura de bandas, os níveis de superfície e o caráter metálico desta superfície. A energia obtida em nosso cálculo por átomo da superfície, com relação à energia bulk, foi de 1,132 eV. Foi feito o estudo da energia de formação de vacâncias do tipo adatom. Encontramos um valor médio de 1,2 eV para a formação de uma única vacância do tipo adatom na superfície Si(111) (7x7). A análise da estrutura de bandas do sistema com vacância possibilitou identificar os estados eletrônicos devido às ligações pendentes dos adatoms. Como uma primeira aplicação dos resultados obtidos para a superfície livre de Si(111) (7x7), investigamos possíveis estados de fisiossorção de moléculas de clorobenzeno sobre sítios específicos sobre a superfície de Si(111) (7x7). Este estudo mostrou que as moléculas de clorobenzeno interagem com a superfície para distâncias de aproximadamente 3,0 Å dos adatoms. Também inferimos que sítios da subunidade triangular faulted são mais favoráveis à adsorção do que sítios correspondentes sobre a subunidade triangula unfaulted. Levantamos a curva da energia de adsorção do clorobenzeno sobre o adatom de canto da subunidade triangular faulted da célula unitária (7x7). A distância de equilíbrio e a energia de adsorção obtidas foram 3,005 Å e 0,161 eV, respectivamente. A ordem de grandeza desta interação corresponde a uma adsorção física da molécula de clorobenzeno sobre a superfície Si(111) (7x7). / Mestre em Física
17

Nové způsoby vzorkování pro vyhodnocení reálných remediačních studií / New sampling approaches for evaluation of real remediation studies

Kroupová, Kristýna January 2017 (has links)
This diploma thesis has been carried out as a part of the project Utilization of long term (passive) sampling methods combined with in situ microcosms for assessment of (bio)degradation potential (PASSES). In the frame of the project groundwater remediation took place in the premises of Farmak a.s. in Olomouc using a pilot photooxidation unit and efficiency of the remediation was monitored through passive and active sampling methods. Pilot photooxidation unit is a technology based on the H2O2/UV-C photochemical oxidation of organic pollutants. In this work optimization tests of the pilot photooxidation unit were performed. The residence time of the groundwater in the photoreactors, required for its sufficient decontamination from pharmaceuticals and aromatic hydrocarbons, was 2.5 hours. 91% degradation of the pharmaceuticals and 80% degradation of aromatic hydrocarbons were reached during this interval. Although the removal efficiency of the pharmaceuticals by the photooxidation unit was high, the pilot photooxidation unit was not able to effectively remove the pharmaceuticals at the studied locality. By comparing the results of the pharmaceuticals from active and passive groundwater sampling during the remediation attempt, passive Polar Organic Chemical Integrative Sampler (POCIS) was found to be...
18

Characterization of Aprotic Solutes and Solvents Using Abraham Model Correlations

Brumfield, Michéla L. 12 1900 (has links)
Experimental data were obtained for the computation of mole fraction solubilities of three dichloronitrobenzenes in organic solvents at 25oC, and solubility ratios were obtained from this data. Abraham model equations were developed for solutes in tributyl phosphate that describe experimental values to within 0.15 log units, and correlations were made to describe solute partitioning in systems that contain either "wet" or "dry" tributyl phosphate. Abraham model correlations have also been developed for solute transfer into anhydrous diisopropyl ether, and these correlations fit in well with those for other ethers. Abraham correlations for the solvation of enthalpy have been derived from experimental and literature data for mesitylene, p-xylene, chlorobenzene, and 1,2-dichlorobenzene at 298.15 K. In addition, the enthalpy contribution of hydrogen bonding between these solutes and acidic solvents were predicted by these correlations and were in agreement with an established method. Residual plots corresponding to Abraham models developed in all of these studies were analyzed for trends in error between experimental and calculated values.
19

Free Molecular and Metal Clusters Studied by Synchrotron Radiation Based Electron Spectroscopy

Rosso, Aldana January 2008 (has links)
The main purpose of this Thesis is the experimental characterization of the electronic and geometric structures of objects called clusters. A cluster consists of a finite group of bound atoms or molecules. Due to its finite size, it may present completely different properties than those of the isolated atom and the bulk. The clusters studied in this work are constituted by rare-gas atoms, organic molecules, and metal atoms. Intense cluster beams were created using either an adiabatic expansion source or a gas-aggregation source, and investigated by means of synchrotron radiation based photoelectron spectroscopy. The reports presented in this Thesis may be divided into three parts. The first one deals with results concerning homogeneous molecular clusters (benzene- and methyl-related clusters) highlighting how molecular properties, such as dipole moment and polarizability, influence the cluster structure. The second part focuses on studies of solvation processes in clusters. In particular, the adsorption of polar molecules on rare-gas clusters is studied. It is shown that the doping method, i.e. the technique used to expose clusters to molecules, and the fraction of polar molecules are important factors in determining the location of the molecules in the clusters. Finally, a summary of investigations performed on metal clusters is presented. The applicability of solid state models to analyse the cluster spectra is considered, and the differences between the atomic, cluster and solid electronic structures are discussed.
20

Impact of Halogenated Aliphatic and Aromatic Additives on Soot and Polycyclic Aromatic Hydrocarbons -- An Ethylene-air Laminar Co-flow Diffusion Flame Study

Kondaveeti, Rajiv 21 August 2012 (has links)
No description available.

Page generated in 0.0484 seconds