Spelling suggestions: "subject:"cholestane"" "subject:"cholestan""
1 |
Genomic and Proteomic Studies on Patients with Cerebrotendinous Xanthomatosis in TaiwanWang, Pei-wen 12 December 2005 (has links)
Cerebrotendinous xanthomatosis (CTX), an autosomal recessive lipid-storage disorder with prominent neurological features, was first described by van Bogaert et al. in 1937. A deficiency of the mitochondrial sterol 27-hydroxylase due to mutations in the CYP27 gene (CYP27) blocks the oxidization of cholesterol side chain at the first step in the formation of bile acids. The accumulation of great amount of cholesterol and cholestanol in various tissues, especially in tendons and neural system, leads to the clinical symptoms including dementia, juvenile cataracts, xanthoma, cerebellar syndrome, atherosclerosis and a variety of neurological dysfunctions in CTX subjects. The diagnosis can be made by demonstrating elevated level of cholestanol in the serum and apprearance of xanthoma in tendon. There is a high prevalence of CTX in the Japanese, Sephardim Jewish and Italian populations.
Here in this investigation, a one-reported pedigree of three affected individuals with typical characteristics of CTX and a heterozygous paternal carrier in Taiwan were assembled. The first part of the project was to clarify the genetic causes of these CTX patients and to design a series of analytical tests for achieving rapid and correct confirmation of the diagnosis. First, 3¡¦ and 5¡¦-flanking region as well as all 8 introns and 9 exons fragments of CYP27 were amplified from genomic DNA by polymerase chain reaction (PCR) and followed by single strand conformation polymorphism (SSCP) under optimal conditions. The SSCP patterns were identical among CTX subjects, the carrier, and normal controls for all exons except exon 2, implying some kind of mutation may exist on it. Then, direct DNA sequencer analysis was performed on the suspected PCR fragment of exon 2. A new homozygous mutation of one base-pair deletion of cytosine at codon 326 on exon 2 was found in all three CTX subjects in this family. This novel point deletion of cytosine at Pro102 (CCT) would cause a frameshift in mRNA (Pro102 ¡÷Leu) and result in the appearance of a premature termination condon (TGA) to substitute for Val106(GTG). This severe mistake would cause the breakdown in the normal function of sterol 27-hydroxylase and lead to CTX.
However, gene analysis could not represent the corresponding functional proteins under various post-translational modifications in complex biological systems. Proteome is the set of expressed protein complement of a genome and proteomic analysis has been widely used in studies of life sciences.
The second part of this study is to characterize the pathological mechanism of CTX patients with serum protein profiles and leukocytes isolated from CTX subjects by means of proteomic technologies, including two-dimensional electrophoresis (2-DE) and MALDI-TOF analysis. The results showed that the amount of vinculin, ABP-280, talin and vimentin in leukocytes of CTX patients increased significantly, reflecting the changes in membrane dynamics concerning cholestanol accumulation. The expression of target proteins in CTX patients and control was further confirmed by Western blotting with specific antisera which indicated the same tendency as 2-DE data.
This is the first report to integrate both genomic and proteomic concepts for analyzing the possible mechanisms of CTX and information provided by this report should be very helpful for the future studies on CTX.
|
2 |
Studies on human sterol 27-hydroxylase with emphasis on its mechanism of regulation and metabolic consequences of a deficient enzyme /Hansson, Magnus, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 5 uppsatser.
|
3 |
Structure Elucidation and Biological Evaluation of a Novel Steroidal Saponin, Cholestanol Glucoside Isolated from Saraca Asoca Enodophytic Fuungus, Lasiodiplodia TheobromaeValayil, Jinu Mathew January 2015 (has links) (PDF)
Although the molecular mechanisms underlying the onset and progression of cancer has been unraveled to a great extend, cancer continues to remain a leading cause of death around the world. Clinical efficacy of the existing anticancer drugs are largely compromised by the inherent and acquired resistance of cancer cell types and the severe side effects evoked by chemotherapeutic agents. Hence, the search for novel anticancer drugs with minimum side effects remains an active area of cancer research.
Although molecular targeted drugs are preferred over the conventional cytotoxic chemotherapy, the screening of natural compounds with cytotoxic potentialities continues as they can serve as lead structures for the development of tumor selective anticancer drugs. Plants and microorganisms have been the prominent sources of therapeutic agents. Microorganisms being readily renewable, inexhaustible sources of diverse bioactive secondary metabolites are preferred over plants as sources of bioactive compounds.
Endophytes are microorganisms that reside within the living tissue of host plant and they enhance the survival value of the host plant by mediating various stress tolerance mechanisms. Endophytic fungi have gained attention as potential sources of bioactive secondary metabolites following the discovery of a taxol producing endophytic fungus Taxomyces adrenae, from Taxus brevifolia. Moreover, endophytes occupy a unique biological niche in which they maintain a balanced interaction with the host organism and other co-inhabiting microorganisms. All these factors contribute to the chemical diversity of the metabolites they produce. Plants restricted to extreme or unique habitats or those with ethnobotanical value are likely to lodge endophytes that possess a unique hoard of secondarymetabolites. Saraca asoca is a traditionalmedicinal plant with its occurrence restricted to countries such as India, Sri Lanka, Burma and Malaysia. The purpose of the present study is to explore the endophytic fungal population associated with S. asoca in search of novel anticancer lead structures.
S. asoca was found to house a diverse endophytic fungal population belonging to 37 different species. Identification of the fungal isolates was based on ITS (internal transcribed spacer region) sequence analysis as well as colony and spore characteristics.
The organic extracts of all fungal species were assessed for their in vitro cytotoxicities in three human cancer cell lines, HeLa, HepG2 and PC3 byMTT assay.
18 species exhibited remarkable cytotoxic activities, among which Pestalotiopsis sp. 6 exhibited themost significant cytotoxicity. The strain with second highest activity was Lasiodiplodia theobromae. In order to identify the active principle present in the organic extracts of Pestalotiopsis sp. 6 and L. theobromae, the organic extracts were chromatographed on TLC plates and individual compounds were recovered by scraping off from the TLC plates and extracting with methanol.
The cytotoxicity assay of the TLC purified compounds suggested the cytotoxic activity of Pestalotiopsis sp.6 to be a synergetic effect of two or more compounds whereas the cytotoxicity of L. theobromae organic extract was largely due to a single compound. Hence the active principle present in L. theobromae organic extract was purified by bioassay - guided column chromatography. Repeated chromatography of the crude extract using three silica gel columns resulted in the isolation of anticancer compound. Based on the analysis of ESI-MS, IR, NMR and UV spectral data, the isolated compound was identified as a novel steroidal saponin, cholestan-3-O-¯-Dglucopyranoside (cholestanol glucoside - CG).
The in vitro cytotoxic effects of CG towards seven human cancer cell lines, HeLa, HepG2, PC3, U251,MCF 7, OVCAR3 and A549 were examined. Among the cell lines screened, HeLa cells weremost vulnerable to CG treatment, with an IC50 value of 3.2 ¹M. Hence themode of cell death induction in HeLa cells by CG was further investigated.
Analysis of cell cycle progression by propidium iodide (PI) staining revealed that CG arrests the cells in S phase of cell cycle prior to the induction of cell death. The morphological and biochemical features of apoptosis were investigated by nuclear staining, DNA fragmentation assay and Annexin V-FITC/ PI dual staining. All these results suggested that CG effectively induced apoptosis in HeLa cells in a concentration dependent manner. It was also found that CG treatment induced remarkable ROS generation and mitochondrial membrane potential loss. The pretreatment of cells with an antioxidant, N-acetyl cysteine (NAC), blocked CG induced ROS generation, mitochondrialmembrane depolarization and apoptotic cell death. Hence it could be concluded that CG kills the cancer cells by augmenting their basal oxidative stress and hence is less likely to be toxic to normal cells. Moreover, a high Bax to Bcl-2 ratio, high levels of Apaf-1 and p53, activation of procaspase-3 and procaspase-9 and cleavage of PARP were observed in CG treated HeLa cells. Taken together, our results suggested that CG induced apoptosis in HeLa cells via ROS mediated mitochondria dependent pathway.
Biosynthesis of secondarymetabolites by filamentous fungi is influenced by the availability of nutrient factors. Therefore, it is essential to optimize the culturemedium components to ensure a maximum and consistent yield of desired metabolite by the fungal isolate. We designed a chemically defined production medium for CG production by L. theobromae. Carbon source, nitrogen source and microelements in the production medium were further optimized in stationary flask cultures to improve the mycelial growth and yield of CG by L. theobromae. The conventional one-factor at a time (OFAT)method was employed for the optimization of carbon and nitrogen sourceswhose contribution effects towards the final yield are large. Response surface methodology (RSM) was employed for the optimization of microelements.
Optimization of culturemedium enhanced the yield of CG from 10mg L¡1 to 50mg L¡1. Various secondarymetabolites are produced by organisms in response to different stress conditions. This knowledge has been exploited in plant cell culture systems to increase the yield of particular secondary metabolites by artificial implementation of stress conditions. We investigated the effect of oxidative, osmotic and heat shock stresses on the production of CG by L. theobromae. Heat shock and osmotic stresses in liquid cultures were found to enhance the yield of CG by 1.2-fold, relative to the controls. Oxidative stress by both menadione and H2O2 enhanced the yield by 1.8-fold compared to the controls. Thus oxidative stress proved to be an efficient enhancer of CG production by L. theobromae. These findings ensure a large scale, cost-effective production of CG.
|
4 |
Immunochemical and chromatographic methods for two anthropogenic markers of contamination in surface watersCarvalho, Jose Joao 08 December 2011 (has links)
Koffein (1,3,7-Trimethylxanthin) und Coprostanol (5beta-cholestan-3beta-ol) wurden im Berliner Oberflächenwasser nachgewiesen. Ihre Konzentrationen korrelierten mit dem Verunreinigungsgrad der Proben, was nahelegt, dass sie sich als Marker für menschliche Aktivität eignen. Bemerkenswerterweise wurde Koffein in jeder einzelnen Oberflächenwasserprobe oberhalb der Bestimmungsgrenze von 0,025 µg/L gefunden. Um Oberflächenwasserproben in größeren Serien zu untersuchen, war die Entwicklung zweier neuer Methoden erforderlich: ein Immunoassay, basierend auf einem monoklonalen Antikörper für Koffein und eine dispersive flüssig-flüssig Mikroextraktionsmethode (DLLME), gefolgt von Flüssigkeitschromatographie gekoppelt mit Tandem-Massenspektrometrie (LC-MS/MS) für Coprostanol. Der entwickelte Koffein-Immunoassay zeigt die beste je erhaltene Nachweisgrenze für Koffein (0,001 µg/L), erlaubt Hochdurchsatz-Analysen und erfordert keine Probenvorbereitung. Der Assay wurde auch erfolgreich für die Messung von Koffein in Getränken, Haarwaschmitteln, Koffeintabletten und menschlichem Speichel angewendet. Antikörper gegen Coprostanol sind nicht kommerziell erhältlich. Eine neue Strategie Anti-Coprostanol-Antikörper zu generieren wurde erarbeitet, die eine analoge Verbindung – Isolithocholsäure (ILA) – als Hapten verwendet, mit der eine Gruppe von Mäusen immunisiert wurde. Ein polyklonales Anti-ILA-Serum wurde produziert, welches Coprostanol bindet, aber die niedrige Affinität erlaubte nicht den Aufbau eines Immunoassays, der die Messung von Umweltkonzentrationen des Anayten (im Bereich ng/L) zulässt. Spezifische Anti-ILA-Immunglobuline G wurden auch in den Faeces der Mäuse gefunden. Coprostanol wurde in den Wasserproben durch die Verwendung einer neuentwickelten LC-MS/MS-Methode unter APCI-Ionisation (atmospheric pressure chemical ionisation) gemessen. Konzentrationen oberhalb von 0,1 µg/L wurden nach Voranreicherung der Probe mittels DLLME bestimmt. / Caffeine (1,3,7-trimethylxanthine) and coprostanol (5beta-cholestan-3beta-ol) were detected in samples of Berlin’s surface water. Their concentrations correlated with the contamination status of the samples, suggesting their usefulness as markers of human activity. Remarkably, caffeine concentrations were always well above the limit of quantitation of 0.025 µg/L. In order to screen surface water samples in larger series, the development of two novel methods was required: a monoclonal antibody-based immunoassay for caffeine and a dispersive liquid-liquid microextraction (DLLME) method, followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) for coprostanol. The caffeine immunoassay developed shows the best analytical limit of detection (LOD) obtained so far for caffeine (0.001 µg/L), allows high-throughput analysis, and does not require sample pre-treatment. The assay was also successfully employed to measure caffeine in beverages, shampoos, caffeine tab-lets, and human saliva. Antibodies to coprostanol are not commercially available. A new strategy to generate anti-coprostanol antibodies was elaborated using an analogous com-pound as hapten – isolithocholic acid (ILA) – and immunizing a group of mice. A polyclonal anti-ILA serum was produced, which binds coprostanol but the low affinity did not permit setting up an immunoassay to measure environmental concentrations of the analyte (in the range of ng/L). Specific anti-ILA immunoglobulin G were also found in the faeces of the immunized mice. Coprostanol was quantified in the water samples using a newly developed LC-MS/MS method using atmospheric pressure chemical ionisation (APCI). Concentrations above 0.1 µg/L were determined after sample preconcentration using DLLME. This extraction method also proved to be successful for enrichment of coprostanol-related compounds such as cholesterol, cholestanol, cholestanone, ergosterol, and stigmasterol.
|
Page generated in 0.0617 seconds