1 |
Indução finita, deduções e máquina de Turing / Finite induction, deductions and Turing machineAlmeida, João Paulo da Cruz [UNESP] 29 June 2017 (has links)
Submitted by JOÃO PAULO DA CRUZ ALMEIDA (joaopauloalmeida2010@gmail.com) on 2017-09-26T16:20:50Z
No. of bitstreams: 1
Minha Dissertação.pdf: 1021011 bytes, checksum: 1717c0a1baae32699bdf06c781a9ed31 (MD5) / Approved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-28T12:58:50Z (GMT) No. of bitstreams: 1
almeida_jpc_me_sjrp.pdf: 1021011 bytes, checksum: 1717c0a1baae32699bdf06c781a9ed31 (MD5) / Made available in DSpace on 2017-09-28T12:58:50Z (GMT). No. of bitstreams: 1
almeida_jpc_me_sjrp.pdf: 1021011 bytes, checksum: 1717c0a1baae32699bdf06c781a9ed31 (MD5)
Previous issue date: 2017-06-29 / Este trabalho apresenta uma proposta relacionada ao ensino e prática do pensamento dedutivo formal em Matemática. São apresentados no âmbito do conjunto dos números Naturais três temas essencialmente interligados: indução/boa ordem, dedução e esquemas de computação representados pela máquina teórica de Turing. Os três temas se amalgamam na teoria lógica de dedução e tangem os fundamentos da Matemática, sua própria indecidibilidade e extensões / limites de tudo que pode ser deduzido utilizando a lógica de Aristóteles, caminho tão profundamente utilizado nos trabalhos de Gödel, Church, Turing, Robinson e outros. São apresentadas inúmeros esquemas de dedução referentes às “fórmulas” e Teoremas que permeiam o ensino fundamental e básico, com uma linguagem apropriada visando treinar os alunos (e professores) para um enfoque mais próprio pertinente à Matemática. / This work deals with the teaching and practice of formal deductive thinking in Mathematics. Three essentially interconnected themes are presented within the set of Natural Numbers: induction, deduction and computation schemes represented by the Turing theoretical machine. The three themes are put together into the logical theory of deduction and touch upon the foundations of Mathematics, its own undecidability and the extent / limits of what can be deduced by using Aristotle's logic, that is the subject in the works of Gödel, Church, Turing, Robinson, and others. There are a large number of deduction schemes referring to the "formulas" and Theorems that are usual subjects in elementary and basic degrees of the educational field, with an appropriate language in order to train students (and teachers) for a more pertinent approach to Mathematics.
|
Page generated in 0.0394 seconds