• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Durabilité des matériaux de puits pétroliers <br />dans le cadre d'une <br />séquestration géologique <br />de dioxyde de carbone et d'hydrogène sulfuré

Jacquemet, Nicolas 24 January 2006 (has links) (PDF)
La séquestration géologique du dioxyde de carbone (CO2) et du sulfure d'hydrogène (H2S) est une solution envisagée par l'industrie pétrolière pour stocker durablement ces gaz indésirables. Elle consiste à les injecter via des puits dans des réservoirs géologiques profonds. Les puits, constitués par des tubes d'acier entourés d'une gaine de ciment, peuvent être dégradés et ainsi constituer un chemin de fuite des gaz vers la surface qui auraient des conséquences humaines et environnementales sérieuses. Diverses expérimentations en laboratoire ont simulé le vieillissement de ces deux matériaux dans des conditions de séquestration géologique. Pour ce faire, un protocole expérimental et analytique spécifique a été mis en place. La simulation numérique du vieillissement du ciment a également été abordée. Le ciment et l'acier ont été altérés au contact de diverses phases fluides à 500 bar-120°C et 500 bar-200°C : une saumure, une saumure chargée en H2S-CO2, un mélange saumure+phase supercritique à H2S-CO2 et une phase supercritique à H2S-CO2 en l'absence d'eau liquide. Dans tous ces cas, on observe deux réactions découplées : la carbonatation du ciment par le CO2 et la sulfuration de l'acier par le H2S. Il apparaît que la carbonatation est maximale et que la sulfuration est au contraire minimale au sein de la phase supercritique en l'absence d'eau liquide. Les propriétés texturales et de porosité du ciment sont peu ou pas affectées par tous les traitements à 120°C. La porosité est même réduite en présence de H2S-CO2. Par contre, à 200°C, ces propriétés sont affectées par le fait de la présence d'eau liquide dans le milieu. A cette température, seul le vieillissement du ciment au sein de la phase supercritique sans eau liquide améliore ses propriétés. Dans toutes les conditions testées, l'acier est toujours corrodé, il est donc le matériau le plus vulnérable des puits.
2

Étude et modélisation de l'alteration physico-chimique de matériaux de cimentation des puits pétroliers

Neuville, Nadine 11 December 2008 (has links) (PDF)
Les matériaux cimentaires sont utilisés dans l'industrie pétrolière pour la construction des puits. Le rôle principal de cette gaine de ciment est d'isoler entre elles les formations géologiques traversées par un puits pétrolier et ce, de manière permanente et pérenne. De nouveaux enjeux environnementaux pour l'industrie pétrolière (limitation des rejets de polluants hydrocarbonés, stockage géologique du CO2) impliquent une meilleure compréhension de la durabilité à long terme des matériaux utilisés pour la cimentation des puits pétroliers. Cette thèse a pour objectif principal de mieux comprendre le comportement de matériaux cimentaires soumis à la lixiviation en conditions de fond de puits et de prédire leur durabilité à long terme. Un montage expérimental a été mis au point permettant de simuler la dégradation de matériaux en température et pression, avec un renouvellement permanent du fluide agressif. Les tests de dégradation ont été effectués à 80°C-1 bar, 80°C-70 bars et 80°C-200 bars. Il a été montré lors de ces travaux que le mode de maturation de la pâte de ciment, correspondant à différentes localisations du matériau au sein d'un puits, influençait la cinétique de dégradation de la pâte de ciment durant sa lixiviation. De plus, la cinétique de dégradation des pâtes de ciments est plus élevée aux hautes pressions à cause, notamment, de différences de solubilité des minéraux. Les simulations effectuées à l'aide du code de transport réactif HYTEC ont permis de reproduire les principaux résultats expérimentaux. Cette thèse ouvre par conséquent de nouvelles perspectives de recherches sur la dégradation des matériaux cimentaires en conditions géologiques sévères.
3

A multi-technique investigation of the effect of hydration temperature on the microstructure and mechanical properties of cement paste / Etude multi-technique de l'effet de la température d'hydratation de ciment sur la microstructure et les propriétés mécaniques de la pâte de ciment

Bahafid, Sara 27 November 2017 (has links)
Le processus de l’hydratation de ciment et la microstructure qui en résulte, dépendent de la formulation de la pâte et des conditions d’hydratation. Parmi différents facteurs, la température d’hydratation a un effet important sur la microstructure et les propriétés physiques et mécaniques des matériaux cimentaires. Ceci est particulièrement important pour l’étude du comportement des ciments pétroliers. En effet, dans un puits pétrolier, une gaine de ciment est coulée entre la roche réservoir et le cuvelage en acier pour assurer entre autre la stabilité et l’étanchéité du puits. En raison du gradient géothermique (environ 25°C par km), la gaine de ciment le long d'un puits est exposée à une température d'hydratation qui augmente avec la profondeur menant à une augmentation de perméabilité et une baisse de propriétés mécaniques le long du puits. L'objectif cette thèse est d'étudier l'effet de la température d'hydratation dans la gamme de 7°C à 90°C sur la microstructure d'une pâte de ciment (classe G) et d'établir le lien entre les modifications microstructurales et les propriétés élastiques du matériau. La caractérisation de la microstructure est faite en considérant une combinaison de plusieurs méthodes expérimentales, à savoir, la diffraction des rayons X & l’analyse Rietveld, l'analyse thermogravimétrique, porosimétrie par l'intrusion de mercure, l'évaluation de la porosité par lyophilisation ou par séchage à 11% HR, essais de sorption au Nitrogène et à la vapeur d'eau et finalement, la résonance magnétique nucléaire 1H. L’assemblage de masse des différentes phases de la microstructure a été évalué montrant une légère dépendance à la température d’hydratation. L’étude de la porosité a montré une augmentation de la porosité capillaire et une légère diminution de la porosité totale à 28 jours d’hydratation, ce qui résulte en une diminution de la porosité du gel de C-S-H en augmentant la température d'hydratation. Une méthode d'analyse a été proposée pour évaluer la densité saturée de C-S-H et sa composition chimique en termes des rapports molaires C/S et H/S pour un C-S-H sec et saturé. Les résultats montrent que la densité de C-S-H augmente avec la température d'hydratation expliquant ainsi l'augmentation observée de la porosité capillaire à températures élevées. Les rapports C/S et H/S diminuent avec l’augmentation de la température d’hydratation. La caractérisation de la microstructure a permis d’alimenter un modèle micromécanique destiné à prédire les propriétés élastiques de la pâte de ciment pour différentes températures d’hydratation. Des modèles d’homogénéisation auto-cohérents à deux et trois échelles ont montré que l’augmentation de la porosité capillaire ne suffit pas pour expliquer la baisse des propriétés mécaniques avec la température. En effet, l’augmentation de la densité de C-S-H avec la température d’hydratation annule l’effet de l’augmentation de la porosité capillaire sur les propriétés élastiques. La réduction des propriétés mécaniques pourrait être expliquée en considérant une distribution de porosité au sein de C-S-H sous forme de C-S-H basse densité LD et haute densité HD telle que proposée par Tennis et Jennings (2000). Cette possibilité est investiguée par une combinaison de techniques de porosimétrie : porosimétrie par l'intrusion de mercure, adsorption d'azote et désorption de vapeur d'eau et par un calcul inverse à l’aide de la modélisation micromécanique. Les résultats montrent que la porosité intrinsèque LD augmente légèrement tandis que la porosité intrinsèque HD diminue de manière significative avec l'augmentation de la température d'hydratation. La diminution des propriétés élastiques des matériaux cimentaires avec l’augmentation de la température d'hydratation s’avère être due à l’action combinée de l'augmentation de la porosité capillaire et des changements de porosités intrinsèques à l’intérieure de C-S-H / The cement hydration process and the resulting microstructure are highly dependent on the cement formulation and the hydration conditions. Particularly, the hydration temperature has a significant influence on the cement paste microstructure and its mechanical properties. This is for instance important for understanding the behaviour and properties of oil-well cements which are used to form a cement sheath between the casing and the surrounding formation for stability and sealing purposes. This cement sheath is hydrated under a progressively increasing temperature along the depth of a well due to the geothermal gradient (about 25°C/km). It results generally in a decrease of the mechanical properties and an increase of permeability along the well. The aim of the present thesis is to investigate the effect of the hydration temperature in the range of 7°C to 90°C on the microstructure of a class G cement paste and to establish the link between these temperature dependent microstructure and the elastic properties of the material. The microstructure characterization is done by combining various experimental methods, including X-Ray diffraction associated with the Rietveld analysis, thermogravimetric analysis, mercury intrusion porosimetry, porosity evaluation by freeze-drying or drying at 11% RH, Nitrogen and water vapour sorption experiments and finally 1H nuclear magnetic resonance. The mass assemblage of microstructure phases at different curing temperatures has been evaluated and showed a slight dependence on the hydration temperature. The porosity evaluations show an increase of the capillary porosity and a slight decrease of the total porosity at 28 days, resulting in a decrease of the gel porosity by increasing the hydration temperature. An analysis method has been proposed to evaluate the C-S-H saturated density and chemical composition in terms of H/S and C/S molar ratios. The C-S-H bulk density is increasing with increasing hydration temperature which explains the observed increase of the capillary porosity for higher curing temperatures. The C/S ratio and H/S ratio for both solid and saturated C-S-H are decreasing with increasing curing temperature. The provided quantitative characterization of cement paste microstructure is used in a micromechanical modelling for evaluation of the elastic properties at various hydration temperatures. Two and three-scale self-consistent micromechanical models have shown that the increase of capillary porosity with increasing hydration temperature cannot fully explain the drop of elastic properties. This is mainly due to the increased elastic properties of C-S-H being denser at higher temperature that cancel the effect of increasing capillary porosity on the overall elastic properties. Another way to fully account for the decrease of the mechanical properties of cement paste is to consider the porosity distribution inside the C-S-H in the form of two distinguished C-S-H types, High Density (HD) and Low Density (LD) C-S-H, as proposed by Tennis and Jennings (2000). This possibility is probed by a combination of various porosity evaluations: Mercury intrusion porosimetry, nitrogen adsorption and water vapour desorption and by a back calculation using micromechanical modelling. The results show that the LD intrinsic porosity is slightly increasing while the HD intrinsic porosity decreases significantly with increasing hydration temperature. The decrease of the elastic properties of cement based materials with increasing hydration temperature is therefore a combined action of the increase of capillary porosity and the changes of intrinsic C-S-H porosities
4

Modélisation expérimentale du stockage géologique du CO2 : étude particulière des interfaces entre ciment de puits, roche reservoir et roche couverture / Experimental simulation of the geological storage of CO2 : particular study of the interfaces between well cement, reservoir rock and caprock

Jobard, Emmanuel 22 February 2013 (has links)
Dans le cadre du stockage géologique de gaz acides, il est impératif de garantir l'intégrité des matériaux sollicités afin d'assurer un confinement pérenne du fluide injecté. Le but de ce travail de thèse est d'étudier, par le biais de modélisations expérimentales, les phénomènes pouvant être responsables de la déstabilisation du système et qui peuvent conduire à des fuites du gaz stocké. Le premier modèle expérimental, appelé COTAGES a permis d'étudier les effets de la déstabilisation thermique provoquée par l'injection d'un gaz à température ambiante dans un réservoir chaud. Ce dispositif a permis de mettre en évidence un transfert de matière important depuis la zone froide (30°C) vers la zone chaude (100°C) conduisant à des modifications des propriétés pétrophysiques. Ces résultats soulignent l'importance de la température d'injection sur la conservation des propriétés d'injectivité du système. Le second modèle, appelé "Sandwich" a permis d'étudier le comportement de l?interface entre la roche couverture (argilite COX) et le ciment de puits. Les expériences batch du modèle Sandwich en présence de CO2 ont permis de mettre en évidence une fracturation de l'interface provoquée par la carbonatation précoce du ciment. Ces résultats soulignent l'importance de l'état initial de la roche couverture dans la séquestration du fluide injecté. Le troisième modèle expérimental est le modèle MIRAGES. Ce dispositif innovant permet d'injecter en continu un flux de CO2 dans un échantillon. Les résultats ont mis en évidence un colmatage partiel de la porosité inter-oolithe à proximité du puits d'injection, ainsi qu'une carbonatation du ciment sous la forme d'un assemblage calcite/aragonite / In the framework of the CO2 storage, it is crucial to ensure the integrity of the solicited materials in order to guarantee the permanent confinement of the sequestrated fluids. Using experimental simulation the purpose of this work is to study the mechanisms which could be responsible for the system destabilization and could lead CO2 leakage from the injection well. The first experimental model, called COTAGES allows studying the effects of the thermal destabilisation caused by the injection of a fluid at 25°C in a hotter reservoir (submitted to the geothermal gradient). This device allows demonstrating an important matter transfer from the cold area (30°C) toward the hot area (100°C). These results highlight the importance of the injection temperature on the injectivity properties and on the possible petrophysical evolutions of the near well. The second model, called ?Sandwich?, allow studying the behaviour of the interface between caprock (COX argillite) and well cement. Indeed, interfaces between the different rock and the well materials represent a weakness area (differential reactivity, fracturing?). Batch experiments carried out with this device in presence of CO2 show the fracturing of the interface caused by the early carbonation of the cement. The third experimental model, called MIRAGES is an innovative device which allows injecting continuously CO2 in a core sample. Samples made of Lavoux limestone and well cement reproduce the injection well at 1/20 scale. Results show a partial filling of the inter-oolithic porosity close to the injection well, and also the carbonation of the cement according to an assemblage of calcite/aragonite

Page generated in 0.0978 seconds