• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Some problems on products of random matrices

Cureg, Edgardo S 01 June 2006 (has links)
We consider three problems in this dissertation, all under the unifying theme of random matrix products. The first and second problems are concerned with weak convergence in stochastic matrices and circulant matrices, respectively, and the third is concerned with the numerical calculation of the Lyapunov exponent associated with some random Fibonacci sequences. Stochastic matrices are nonnegative matrices whose row sums are all equal to 1. They are most commonly encountered as transition matrices of Markov chains. Circulant matrices, on the other hand, are matrices where each row after the first is just the previous row cyclically shifted to the right by one position. Like stochastic matrices, circulant matrices are ubiquitous in the literature.In the first problem, we study the weak convergence of the convolution sequence mu to the n, where mu is a probability measure with support S sub mu inside the space S of d by d stochastic matrices, d greater than or equal to 3. Note that mu to the n is precisely the distribution of the product X sub 1 times X sub 2 times and so on times X sub n of the mu distributed independent random variables X sub 1, X sub 2, and so on, X sub n taking values in S. In [CR] Santanu Chakraborty and B.V. Rao introduced a cyclicity condition on S sub mu and showed that this condition is necessary and sufficient for mu to the n to not converge weakly when d is equal to 3 and the minimal rank r of the matrices in the closed semigroup S generated by S sub mu is 2. Here, we extend this result to any d bigger than 3. Moreover, we show that when the minimal rank r is not 2, this result does not always hold.The second problem is an investigation of weak convergence in another direction, namely the case when the probability measure mu's support S sub mu consists of d by d circulant matrices, d greater than or equal to 3, which are not necessarily nonnegative. The resulting semigroup S generated by S sub mu now lacking the nice property of compactness in the case of stochastic matrices, we assume tightness of the sequence mu to the n to analyze the problem. Our approach is based on the work of Mukherjea and his collaborators, who in [LM] and [DM] presented a method based on a bookkeeping of the possible structure of the compact kernel K of S.The third problem considered in this dissertation is the numerical determination of Lyapunov exponents of some random Fibonacci sequences, which are stochastic versions of the classical Fibonacci sequence f sub (n plus 1) equals f sub n plus f sub (n minus 1), n greater than or equal to 1, and f sub 0 equal f sub 1 equals 1, obtained by randomizing one or both signs on the right side of the defining equation and or adding a "growth parameter." These sequences may be viewed as coming from a sequence of products of i.i.d. random matrices and their rate of growth measured by the associated Lyapunov exponent. Following techniques presented by Embree and Trefethen in their numerical paper [ET], we study the behavior of the Lyapunov exponents as a function of the probability p of choosing plus in the sign randomization.
2

Equações polinomiais e matrizes circulantes

Oliveira Júnior, Pedro Jerônimo Simões de 10 July 2015 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-30T14:02:41Z No. of bitstreams: 1 arquivototal.pdf: 1530287 bytes, checksum: bd20f7e7a563f1aa0ad40d276bc400f9 (MD5) / Approved for entry into archive by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2017-08-30T14:19:18Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 1530287 bytes, checksum: bd20f7e7a563f1aa0ad40d276bc400f9 (MD5) / Made available in DSpace on 2017-08-30T14:19:18Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1530287 bytes, checksum: bd20f7e7a563f1aa0ad40d276bc400f9 (MD5) Previous issue date: 2015-07-10 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we discuss the procedures for solving polynomials equations of degree n 4; n 2 N via circulant matrices, highlighting a new perspective to obtain the Cardano- Tartaglia formulae. This brings up a new look on connected subjects, including the elimination of the term of degree (n􀀀1) and the characterization of real polynomials with all real roots. The method is based on searching a circulant matrix whose characteristic polynomial is identical to the one with the same roots we desire to nd. This approach provides us a simple and uni ed method for all equations through degree four. / Neste trabalho abordamos via matrizes circulantes a resolução de equações polinomiais de grau n 4; n 2 N , destacando uma nova perspectiva para obtenção das fórmulas de Cardano-Tartaglia. Além disso, ele oportuniza uma nova maneira de olhar para questões conexas, incluindo a eliminação do termo de grau (n 􀀀 1) e a caracterização de equações reais com todas as raízes reais. O método é baseado na busca de uma matriz circulante cujo polinômio característico seja idêntico ao das raízes que queremos encontrar. Essa metodologia nos fornece um método simples e uni cado para todas equações até quarto grau.
3

Multilevel Hadamard Matrices

Parker, Keli Siqueiros 17 June 2011 (has links)
No description available.
4

Estimation de modèles tensoriels structurés et récupération de tenseurs de rang faible / Estimation of structured tensor models and recovery of low-rank tensors

Goulart, José Henrique De Morais 15 December 2016 (has links)
Dans la première partie de cette thèse, on formule deux méthodes pour le calcul d'une décomposition polyadique canonique avec facteurs matriciels linéairement structurés (tels que des facteurs de Toeplitz ou en bande): un algorithme de moindres carrés alternés contraint (CALS) et une solution algébrique dans le cas où tous les facteurs sont circulants. Des versions exacte et approchée de la première méthode sont étudiées. La deuxième méthode fait appel à la transformée de Fourier multidimensionnelle du tenseur considéré, ce qui conduit à la résolution d'un système d'équations monomiales homogènes. Nos simulations montrent que la combinaison de ces approches fournit un estimateur statistiquement efficace, ce qui reste vrai pour d'autres combinaisons de CALS dans des scénarios impliquant des facteurs non-circulants. La seconde partie de la thèse porte sur la récupération de tenseurs de rang faible et, en particulier, sur le problème de reconstruction tensorielle (TC). On propose un algorithme efficace, noté SeMPIHT, qui emploie des projections séquentiellement optimales par mode comme opérateur de seuillage dur. Une borne de performance est dérivée sous des conditions d'isométrie restreinte habituelles, ce qui fournit des bornes d'échantillonnage sous-optimales. Cependant, nos simulations suggèrent que SeMPIHT obéit à des bornes optimales pour des mesures Gaussiennes. Des heuristiques de sélection du pas et d'augmentation graduelle du rang sont aussi élaborées dans le but d'améliorer sa performance. On propose aussi un schéma d'imputation pour TC basé sur un seuillage doux du coeur du modèle de Tucker et son utilité est illustrée avec des données réelles de trafic routier / In the first part of this thesis, we formulate two methods for computing a canonical polyadic decomposition having linearly structured matrix factors (such as, e.g., Toeplitz or banded factors): a general constrained alternating least squares (CALS) algorithm and an algebraic solution for the case where all factors are circulant. Exact and approximate versions of the former method are studied. The latter method relies on a multidimensional discrete-time Fourier transform of the target tensor, which leads to a system of homogeneous monomial equations whose resolution provides the desired circulant factors. Our simulations show that combining these approaches yields a statistically efficient estimator, which is also true for other combinations of CALS in scenarios involving non-circulant factors. The second part of the thesis concerns low-rank tensor recovery (LRTR) and, in particular, the tensor completion (TC) problem. We propose an efficient algorithm, called SeMPIHT, employing sequentially optimal modal projections as its hard thresholding operator. Then, a performance bound is derived under usual restricted isometry conditions, which however yield suboptimal sampling bounds. Yet, our simulations suggest SeMPIHT obeys optimal sampling bounds for Gaussian measurements. Step size selection and gradual rank increase heuristics are also elaborated in order to improve performance. We also devise an imputation scheme for TC based on soft thresholding of a Tucker model core and illustrate its utility in completing real-world road traffic data acquired by an intelligent transportation

Page generated in 0.0371 seconds