• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 12
  • 11
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Clines, Species and Eucalypts: An Evolutionary Perspective

Holman, James, n/a January 2003 (has links)
Two eucalypt clines were examined using morphological, ecophysiological and molecular analyses. The species complexes examined were an ironbark complex (Eucalyptus melanophloia x E. whitei) and a box complex (E. brownii x E. populnea). Both of these complexes demonstrate continuous morphological variation across their clines. The origin of these morphological clines has previously been interpreted as the product of secondary contact between allopatric species. In this study, an analysis of morphological variation across the clines did not identify an increase in trait variance in the intermediate populations, which suggests that previous theories concerning the origin of these clines may not be valid. Genetic structuring in nuclear and chloroplast DNA was examined across the clines to investigate whether the morphological clines were the product of secondary contact between two independent evolutionary lineages, or whether the clines represent a single evolutionary lineage that has undergone primary differentiation. The microsatellite analyses indicated that there was little genetic structuring across either cline, and that there were only low levels of population differentiation. The lack of hierarchical structuring in the distribution of nuclear genetic variation suggests that these clines are unlikely to be the product of recent gene flow between two formerly allopatric species/populations. A nested clade analysis of the JLA+ region of the cpDNA provides additional evidence to reject the null hypothesis that the morphospecies classifications represent distinct evolutionary lineages. Instead the analyses indicate that each cline represents a single cohesion species and a single evolutionary lineage. The phylogeographic distribution of cpDNA haplotypes is likely to have resulted from restricted seed mediated gene flow with isolation by distance. A more cogent explanation for the clines, based on the genetic data, is that they have arisen through the process of continuous morphological diversification that has been promoted by a directional selection gradient. Drought experiments were conducted in the glasshouse to investigate whether differences in physiological performance under water stress helps to explain the maintenance of the ironbark cline. Under increasing water stress, the morphotypes showed differences in their ability to maintain water status and photosynthetic rates, yet there was no obvious pattern to these differences across the cline. Physiological differences are therefore inadequate to explain the maintenance of the ironbark cline and highlight the compensatory role that morphological variation may play in alleviating water stress. The value of adopting the cohesion species concept and a hypothesis-testing framework to assess species status is demonstrated in this study. This framework provided a statistical approach to distinguish independent evolutionary lineages from interspecific populations and provides evidence to refute the current species status of the species complexes studied. Eucalypt classification is predominantly based on morphology, which results in taxonomic classification that may not reflect genealogical relationships. This is due to the disparity between morphological and phylogenetic relationships. I therefore suggest that current presumptions regarding the prevalence and importance of hybridisation within the genus may reflect taxonomic classification. An accurate assessment of the prevalence and importance of hybridisation requires species classification to be based on genealogical relationships.
2

The Quantitative Genetics of Clinal Variation in Drosophila melanogaster

Long, Anthony January 1991 (has links)
<p> This work incorporates information from two sources in order to examine the nature of natural selection acting on phenotypic characters in Drosophila melanogaster along a North South cline. Isofemale lines were established from flies collected along a North South cline extending from Winnipeg, Manitoba to Tampa Bay, Florida. Offspring from different lines within each position were then cultured under standardized conditions and used to examine phenotypic variation in 10 morphological characters along the cline. In a separate set of experiments, flies from Vineland, Ontario were mated in a half-sib design in order to estimate the genetic covariance of the set of 10 characters. The results from the clinal and heritability experiments were then combined using Lande's (1979) equation,&.= Gp-ls, to estimate the net selective differentials and net selection gradients for each adjacent set of populations. The study concluded that: 1) Clinal variation is non-linear, with larger flies in the middle latitudes and smaller flies in the north and south. 2) Selection appears to act primarily on body characters in the north (wing width and femur length) and head characters in the south (eye and face width). 3) Scutellum width and wing length generally moderate the prevalent trends in directional selection on the other characters through antagonistic correlated responses. 4) Clinal patterns of variation may not be at equilibrium, but instead dominated by seasonal responses to selection pressures. </p> / Thesis / Master of Science (MSc)
3

Conifer Evolution, from Demography and Local Adaptation to Evolutionary Rates : Examples from the Picea genus

Chen, Jun January 2012 (has links)
Evolutionary process can be inferred at three different levels: the species level, the population level and the molecular level. In this thesis, I applied approaches at these three levels and aimed to get a comprehensive picture of conifer evolution, from speciation and demography to geographic variation and local adaptation, and then to the molecular evolution of proteins and small regulatory RNAs. Spruce species have been observed to possess a large number of trans-species shared polymorphisms. Using an “Isolation with migration” model, we found that the large effective population size of spruce retained these shared polymorphisms, inheriting them from the common ancestor. Post-divergence gene flow only existed between Picea abies and P. glauca, and between P. wilsonii and P. schrenkiana. The combination of Tajima’s D and Fay &amp; Wu’s H at most of loci suggested an ancient and severe bottleneck for most species except P. breweriana. Furthermore, I investigated the effect of local selection in two parallel clines, which is one of the major forces that can cause divergence or even speciation. The timing of bud set and growth cessation was found correlated with latitude in populations of P. abies and P. obovata. Using allele frequency spectrum analyses we identified three genes under local selection in both species including two circadian-clock genes GI and PRR7, and one photoperiodic gene FTL2. This indicated that parallel evolution could occur through groups of genes within related pathways. Clinal variation at expression level provided stronger evidence of selection in FTL2, which has previously been associated with bud set in P. abies. Finally we focused on the molecular evolution of mRNA and small regulatory RNAs in P. abies. With the help of Next-Generation sequencing, we have achieved in spruce the first de novel assembly of the needle transcriptome and a preliminary characterization of sRNA populations. Along with features common in plants, spruce also exhibited novelties in many aspects including lower substitution rate and protein evolutionary rate, dominance of 21-nt sRNA, and a large proportion of TIR-NBS-LRR genes as sRNA sources and targets.
4

Quantitative genomic analysis of agroclimatic traits in sorghum

Olatoye, Olalere Marcus January 1900 (has links)
Doctor of Philosophy / Department of Agronomy / Geoffrey Morris / Climate change has been anticipated to affect agriculture, with most the profound effect in regions where low input agriculture is being practiced. Understanding of how plants evolved in adaptation to diverse climatic conditions in the presence of local stressors (biotic and abiotic) can be beneficial for improved crop adaptation and yield to ensure food security. Great genetic diversity exists for agroclimatic adaptation in sorghum (Sorghum bicolor L. Moench) but much of it has not been characterized. Thus, limiting its utilization in crop improvement. The application of next-generation sequencing has opened the plant genome for analysis to identify patterns of genome-wide nucleotide variations underlying agroclimatic adaptation. To understand the genetic basis of adaptive traits in sorghum, the genetic architecture of sorghum inflorescence traits was characterized in the first study. Phenotypic data were obtained from multi-environment experiments and used to perform joint linkage and genome-wide association mapping. Mapping results identified previously mapped and novel genetic loci underlying inflorescence morphology in sorghum. Inflorescence traits were found to be under the control of a few large and many moderate and minor effect loci. To demonstrate how our understanding of the genetic basis of adaptive traits can facilitate genomic enabled breeding, genomic prediction analysis was performed with results showing high prediction accuracies for inflorescence traits. In the second study, the sorghum-nested association mapping (NAM) population was used to characterize the genetic architecture of leaf erectness, leaf width, and stem diameter. About 2200 recombinant inbred lines were phenotyped in multiple environments. The obtained phenotypic data was used to perform joint linkage mapping using ~93,000 markers. The proportion of phenotypic variation explained by QTL and their allele frequencies were estimated. Common and moderate effects QTL were found to underlie marker-trait associations. Furthermore, identified QTL co-localized with genes involved in both vegetative and inflorescence development. Our results provide insights into the genetic basis of leaf erectness and stem diameter in sorghum. The identified QTL will also facilitate the development of genomic-enable breeding tools for crop improvement and molecular characterization of the underlying genes Finally, in a third study, 607 Nigerian accessions were genotyped and the resulting genomic data [about 190,000 single nucleotide polymorphisms (SNPs)] was used for downstream analysis. Genome-wide scans of selection and genome-wide association studies (GWAS) were performed and alongside estimates of levels of genetic differentiation and genetic diversity. Results showed that phenotypic variation in the diverse germplasm had been shaped by local adaptation across climatic gradient and can provide plant genetic resources for crop improvement.
5

Systematics of Eastern North American Bracken Fern

Speer, William D. 07 May 1997 (has links)
The cosmopolitan Pteridium aquilinum (L.) Kuhn is widespread throughout eastern North American, where it is represented primarily by Tryon's (1941) var. latiusculum (Desv.) Underw. and var. pseudocaudatum (Clute) Heller. The taxonomy of Pteridium is controversial. Fourteen isozyme loci and 12 morphological characters were used to assess the taxonomic relationship of these two varieties. Isozyme data indicated a high mean genetic identity (I = 0.976) between eleven bracken populations. Strong patterns of geographic variation for isozyme allele frequencies were also observed. The isozyme results did not separate the two taxa. Numerical analysis of the morphology distinguished the two taxa when the qualitative characters were used alone or in conjunction with some of the quantitative traits. All qualitative characters differed significantly between the two taxa. No perceptible geographic pattern of variation was observed. Morphological distinctiveness was maintained even in those localities where both taxa were present, with few or no intermediates being found. Isozyme evidence suggestive of gene flow between the two varieties was found at Greensboro, NC, where the two morphotypes were easily recognizable. The isozyme evidence strongly indicates conspecificity, while the morphological evidence supports their status at the varietal level. / Master of Science
6

Genetic diversity and hardiness in Scots pine from Scandinavia to Russia

Olsson, Jenny January 2019 (has links)
The postglacial recolonization of northern Europe supposedly originated from Western Europe and the Russian Plain, however, recent molecular and macrofossil-based investigations suggest that the history may be more complex than previously thought. This study aims to investigate the genetic diversity and population structure of Scots pine from Scandinavia to Russia to re-evaluate its recolonization history, and to examine whether the pattern of spatial genetic diversity has any adaptive significance. Populations ranging from Norway to Russia were sampled and genotyped using genotyping-by-sequencing. The seedlings were freeze tested to provide an average degree of hardiness for every population. Eight hundred and thirty-two seedlings were analyzed, and 6,034 SNPs were recovered in these individuals after stringent filtering. Population structure was investigated using fastStructure and differentiation between populations was estimated with pairwise FST and analysis of molecular variance (AMOVA) to assess the genetic variability. Genetic diversity was measured as observed heterozygosity, H0, in populations, clusters and overall. Two genetic clusters were detected in the samples, one in Norway and Sweden and one in Russia. These clusters are weakly differentiated (FST = 0.01202) with only 0.66 % variation between them. Highest variation was found within populations (98.8 %) and the overall genetic diversity for all populations was high (Ho = 0.2573). The weak differentiation and high diversity are indicative of extensive gene flow between populations in this species. The composition of the clusters across the sampled area suggests a westward recolonization from the Russian Plain into Scandinavia, and a possible local origin of another polymorphism in Norway and Sweden. No clear relationship between cold hardiness and genetic variation was detected. The clinal variation in cold hardiness reflects local adaptation, and the difference between genetic and phenotypic variation is likely due to epigenetic regulation or polygenic inheritance. More extensive genome scan is needed to understand the genetic basis of local adaptation.
7

Determinants of Clinal Variation in Life History of Dusky Salamanders (Desmognathus Ocoee): Prey Abundance and Ecological Limits on Foraging Time Restrict Opportunities for Larval Growth

Bernardo, Joseph, Agosta, Salvatore J. 01 April 2003 (has links)
Recent models argue that thermal environments are the major cause of ectotherm life-history clines. However, elevational clines in body size in the mountain dusky salamander Desmognathus ocoee (family Plethodontidae) shift from positive at hatching, to negative at metamorphosis to positive again as adults, and so are not consistent with this explanation. The clinal shift from hatching to metamorphosis was investigated by examining the clinal and seasonal feeding patterns of larval salamanders at high and low elevation sites in rockface and woodland habitats. Repeated cohort sampling was also used to examine clinal and seasonal patterns in body size and to estimate average growth rates. Larval growth in both rockface and woodland habitats was tightly correlated with feeding activity. Although temperature was found to vary between high and low elevation sites, the greatest growth occurred in a cold woodland habitat with a high elevation, and the lowest growth occurred in an adjacent rockface habitat. Because this difference in growth cannot be attributed to thermal differences, we conclude that local food resource levels are the predominant source of local differences in growth. These findings, clinal patterns of variation in other predatory salamanders, and experimental analyses in which both food and temperature are orthogonally manipulated, indicate that general models that single out temperature as the principle cause of ectotherm life-history clines should be viewed with caution.
8

Population differentiation in Lythrum salicaria along a latitudinal gradient

Olsson, Katarina January 2004 (has links)
<p>In this thesis, quantitative genetic approaches, common-garden experiments, and field studies were combined to examine patterns of population differentiation and the genetic architecture of characters of putative adaptive significance in the widely distributed perennial herb Lythrum salicaria. In this work, I (1) documented patterns of population differentiation in phenology, life-history, and morphology along latitudinal gradients at different geographical scales, (2) investigated the genetic architecture of phenology, flower morphology, and inflorescence size, and (3) combined estimates of phenotypic selection in the field with information on the genetic variance-covariance matrix (G) to examine potential constraints to adaptive evolution. </p><p>A common-garden experiment demonstrated latitudinal variation in life-history, and phenology of growth and reproduction among L. salicaria populations sampled across Sweden. Flower morphology varied significantly among populations, but was, with the exception of calyx length, not related to latitude of origin. A second experiment, which included two Swedish, two Dutch, and two Spanish populations, indicated that the latitudinal gradient in reproductive and vegetative phenology might extend throughout Europe.</p><p>A quantitative-genetic study of two Swedish populations revealed significant additive genetic variation for all phenological and morphological traits investigated. The G matrices of the populations differed significantly according to common principal component analysis, and genetic correlations within the study populations did not strictly correspond to trait correlations observed among populations.</p><p>In a field study, I detected directional selection through female function for larger inflorescences in two consecutive years. Relative fitness increased disproportionately with inflorescence size in the year when supplemental hand-pollination indicated that pollen limitation was severe. Genetic correlations with inflorescence size considerably influenced predicted response to selection in other characters.</p><p>Taken together, the results suggest that among-population differences in phenology and life-history in L. salicaria have evolved in response to latitudinal variation in length of the growing season. They demonstrate that the evolutionary potential of local populations may be considerable. The genetic covariance structure substantially influences predicted short-term evolutionary trajectories. However, the weak correspondence between genetic correlations documented within populations and trait correlations among populations, suggest that the G matrix has not imposed strict constraints on patterns of among-population differentiation.</p>
9

Population differentiation in Lythrum salicaria along a latitudinal gradient

Olsson, Katarina January 2004 (has links)
In this thesis, quantitative genetic approaches, common-garden experiments, and field studies were combined to examine patterns of population differentiation and the genetic architecture of characters of putative adaptive significance in the widely distributed perennial herb Lythrum salicaria. In this work, I (1) documented patterns of population differentiation in phenology, life-history, and morphology along latitudinal gradients at different geographical scales, (2) investigated the genetic architecture of phenology, flower morphology, and inflorescence size, and (3) combined estimates of phenotypic selection in the field with information on the genetic variance-covariance matrix (G) to examine potential constraints to adaptive evolution. A common-garden experiment demonstrated latitudinal variation in life-history, and phenology of growth and reproduction among L. salicaria populations sampled across Sweden. Flower morphology varied significantly among populations, but was, with the exception of calyx length, not related to latitude of origin. A second experiment, which included two Swedish, two Dutch, and two Spanish populations, indicated that the latitudinal gradient in reproductive and vegetative phenology might extend throughout Europe. A quantitative-genetic study of two Swedish populations revealed significant additive genetic variation for all phenological and morphological traits investigated. The G matrices of the populations differed significantly according to common principal component analysis, and genetic correlations within the study populations did not strictly correspond to trait correlations observed among populations. In a field study, I detected directional selection through female function for larger inflorescences in two consecutive years. Relative fitness increased disproportionately with inflorescence size in the year when supplemental hand-pollination indicated that pollen limitation was severe. Genetic correlations with inflorescence size considerably influenced predicted response to selection in other characters. Taken together, the results suggest that among-population differences in phenology and life-history in L. salicaria have evolved in response to latitudinal variation in length of the growing season. They demonstrate that the evolutionary potential of local populations may be considerable. The genetic covariance structure substantially influences predicted short-term evolutionary trajectories. However, the weak correspondence between genetic correlations documented within populations and trait correlations among populations, suggest that the G matrix has not imposed strict constraints on patterns of among-population differentiation.
10

Taxonomy of the Rufous-naped lark (Mirafra africana) complex based on song analysis

Nymark, Marianne Kristine January 2021 (has links)
The Rufous-naped lark Mirafra africana complex consists of 22 subspecies spread across the African continent. Several of the subspecies have recently been suggested to potentially be treated as separate species. In this study a comparative analysis was done on the song from seven of the subspecies: M. a. africana, M. a. athi, M. a. grisescens, M. a. kabalii, M. a. nyikae, M. a. transvaalensis and M. a. tropicalis. The results showed that M. a. athi, M. a. kabalii and M. a. nyikae are all very divergent from each other as well as from the other four subspecies. In contrast, M. a. tropicalis, M. a. grisescens, M. a. africana and M. a. transvaalensis are not clearly separable from each other. Based on the results, I suggest that M. a. athi, M. a. kabalii and M. a. nyikae can be classified as separate species, with M. a. africana, M. a. tropicalis, M. a grisescens and M. a. transvaalensis forming a fourth species (M. africana sensu stricto). Finally, I conclude that this study shows that more studies need to be done on the subspecies of the Mirafra africana complex.

Page generated in 0.0526 seconds