• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Fiberoptic Microneedle Device for Simultaneous Co-Delivery of Fluid Agents and Laser Light with Specific Applications in the Treatment of Brain and Bladder Cancers

Hood, Robert L. 16 October 2013 (has links)
This dissertation describes the development of the fiberoptic microneedle device (FMD), a microneedle technology platform for fluid and light delivery, from general engineering characterization to specific applications in treating bladder and brain cancers. The central concept of the FMD is physical modification of silica fiberoptics and capillary tubes into sharp microneedles capable of penetrating a tissue's surface, enabling light and fluid delivery into the interstitial spaces. Initial studies sought to characterize the mechanical penetration and optical delivery of multimode fiberoptics and capillary tubes modified through a custom, CO2 laser melt-drawing technique. Additional work with multimode fibers investigated using an elastomeric lateral support medium to ensure robust penetration of small diameter fibers. These early experiments laid an engineering foundation for understanding the FMD technology. Subsequent studies focused on developing the FMD to treat specific diseases. The first such investigation sought to leverage the high aspect ratio nature of FMDs made from long capillary tubes as a therapy delivery device deployable through the instrument channel of a urological cystoscope. The therapeutic strategy was to infuse single-walled carbon nanohorns (SWNHs), a carbon-based nanoparticle allowing surface modification and drug encapsulation, into the infiltrating front of later stage bladder tumors. The SWNHs primarily serve as exogenous chromophores, enabling a fluid-based control of photothermal heat generation created when the SWNHs interacted with laser energy from an interstitial FMD or a light-emitting fiber in the bladder's interior. The study described here primarily sought to characterize the dispersal of the infused SWNHs and the photothermal response of the particles when heated with a 1064 nm laser. The FMD was also developed as a platform capable of conducting convection-enhanced delivery (CED), a therapeutic approach to treat invasive tumors of the central nervous system such as malignant glioma (MG). Intracranial CED involves the placement of small catheters local to the tumor site and slow infusion of a chemotherapeutic over long timeframes (12-72 hours). A primary challenge of this treatment approach is infused chemotherapeutics not dispersing sufficiently to reach the infiltrating cells in the tumor's margins. The hypothetical improvement provided by the FMD technology is using sub-lethal photothermal heating to sufficiently increase the diffusive and convective transport of an infusate to reach infiltrative cells in the tumor's periphery. Initial experiments sought to demonstrate and characterize a heat-mediated increase of volumetric dispersal in Agarose tissue phantoms and ex vivo tissue. Subsequent studies with in vivo rodent models determined the best laser parameters to achieve the desired levels of diffuse, sub-lethal heat generation and then demonstrated the hypothesis of increasing the rate of volumetric dispersal though concurrent local hyperthermia. This research was the first demonstration of photothermal augmentation of an interstitially infused fluid's dispersal rate, which may have uses outside of the CED approach to brain cancer exhibited here. Taken in sum, this manuscript describes the potency and versatility of the FMD technology platform through its development in various biomedical applications. / Ph. D.
2

Nanoemulsions Within Liposomes for Cytosolic Drug Delivery to Multidrug-Resistant Cancer Cells

Williams, Jacob Brian 01 December 2016 (has links)
Cancer cells that survive chemotherapy treatment often develop resistance to the administered chemotherapeutics, as well as to many other types of drugs, because the cancer cells increase their production of efflux pumps in the cell. This undesired phenomenon of resistance to cancer drugs is known as multidrug resistance. This work uses a novel drug carrier, called an eLiposome, to achieve cytosolic drug delivery to kill multidrug-resistant cancer cells. An eLiposome consists of a perfluoropentane (PFC5) emulsion droplet inside of a liposome. Folate attached to the eLiposome facilitates uptake into the cell. The PFC5 droplet is metastable at body temperature, but will rupture the liposome as the droplet expands during vaporization, and will release any drugs encapsulated inside of the liposome directly to the cell cytosol. Laser and ultrasound were examined as triggers to initiate the vaporization of the PFC5 droplet and actuate the release of doxorubicin (Dox) from folated eLiposomes containing Dox (feLD). Gold nanorods (GNRs) were synthesized and transferred to PFC5 droplets. Although GNRs are efficient at converting irradiated laser light to heat, no vaporization of the PFC5 droplets was observed when irradiated with laser light. Further investigation into the energy required for vaporization of PFC5 droplets revealed that there are currently no portable and wearable lasers available to provide enough energy to vaporize PFC5 droplets. Two seconds of ultrasound can release 78% of encapsulated Dox from feLD. Dox-sensitive KB-3-1 cells and Dox-resistant KB-V1 cells treated with feLD (without ultrasound) had cell viabilities of 33% and 60%, respectively. Ultrasound had negligible additional effect on the cell viability of KB-3-1 and KB-V1 cells treated with feLD (33% and 53%, respectively). We hypothesized that the Dox fiber formed during the loading of Dox into the eLiposome is a site for heterogeneous nucleation once the feLD is endocytosed by the cell, and vaporization and drug release occurs with or without ultrasound. Blocking the efflux pumps with verapamil decreases the rate at which Dox is exported from multidrug-resistant cells. When verapamil is co-delivered with feLD, the cell viability of KB-3-1 and KB-V1 cells decreases to 29% and 25%, respectively; thereby reversing the multidrug resistance possessed by KB-V1 cells. The delivery of doxorubicin inside of folated eLiposomes with an efflux pump blocker is a novel way to kill multidrug-resistant cancer cells as effectively as non-resistant cancer cells independent of lasers or ultrasound.

Page generated in 0.0359 seconds