• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Klimatoptimering av stomme i flerbostadshus : Jämförelse av betong och regelväggar för lägenhetsskiljande väggar

Haboush, Asmaa January 2024 (has links)
Since the construction industry has a significant impactful footprint on the climate, a transition to sustainable solutions is imperative. Concrete is the predominant material for load-bearing structures in multi-residential buildings and is usually used in more walls than necessary, resulting in unnecessary excess of carbon dioxide. This study aims to climate-optimize the intended load-bearing structure in a multi-residential building project by evaluating the possibility of an alternative load-bearing structure. Concrete party walls, those which are unnecessary for load-bearing purposes, are removed in the alternative load-bearing structure and replaced with stud walls that meet sound and fire requirements. The comparison is made between the alternative and intended load-bearing structures concerning structural performance and overall climate impact. To comprehend the subject, an extensive literature study was conducted. Subsequently, the load-bearing structures were modelled in FEM-design program to analyse and compare structural aspects. Using FEM-Climate, life-cycle analyses (LCAs) were performed for both load-bearing structures to assess the difference in the total amount of carbon dioxide equivalents ( ). The results indicate that utilization rates are optimized in the alternative load-bearing structure with the reduction of concrete walls. Furthermore, the results show that the deflection value in the alternative load-bearing structure increases relative to the intended, which is deemed acceptable according to the established requirements. Moreover, LCA results show that the total amount of carbon dioxide equivalents ( ) decreased by approximately 6.5% kg   per gross area in the alternative load-bearing structure. However, with the replacement of stud walls, the total amount of   increased by about 6% kg   per gross area. This resulted in the alternative load-bearing structure being a less favourable solution than the intended one, as no optimization had been achieved from a climate perspective according to the LCA calculations and   values. Since the construction industry has a significant impactful footprint on the climate, a transition to sustainable solutions is imperative. Concrete is the predominant material for load-bearing structures in multi-residential buildings and is usually used in more walls than necessary, resulting in unnecessary excess of carbon dioxide. This study aims to climate-optimize the intended load-bearing structure in a multi-residential building project by evaluating the possibility of an alternative load-bearing structure. Concrete party walls, those which are unnecessary for load-bearing purposes, are removed in the alternative load-bearing structure and replaced with stud walls that meet sound and fire requirements. The comparison is made between the alternative and intended load-bearing structures concerning structural performance and overall climate impact. To comprehend the subject, an extensive literature study was conducted. Subsequently, the load-bearing structures were modelled in FEM-design program to analyse and compare structural aspects. Using FEM-Climate, life-cycle analyses (LCAs) were performed for both load-bearing structures to assess the difference in the total amount of carbon dioxide equivalents ( ). The results indicate that utilization rates are optimized in the alternative load-bearing structure with the reduction of concrete walls. Furthermore, the results show that the deflection value in the alternative load-bearing structure increases relative to the intended, which is deemed acceptable according to the established requirements. Moreover, LCA results show that the total amount of carbon dioxide equivalents ( ) decreased by approximately 6.5% kg   per gross area in the alternative load-bearing structure. However, with the replacement of stud walls, the total amount of   increased by about 6% kg   per gross area. This resulted in the alternative load-bearing structure being a less favourable solution than the intended one, as no optimization had been achieved from a climate perspective according to the LCA calculations and   values.

Page generated in 0.0257 seconds