• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Species trees from gene trees: reconstructing Bayesian posterior distributions of a species phylogeny using estimated gene tree distributions

Liu, Liang 14 September 2006 (has links)
No description available.
2

Estimation of Species Tree Using Approximate Bayesian Computation

Fan, Hang 25 October 2010 (has links)
No description available.
3

Simultaneous estimation of population size changes and splits times using importance sampling

Forest, Marie January 2014 (has links)
The genome is a treasure trove of information about the history of an individual, his population, and his species. For as long as genomic data have been available, methods have been developed to retrieve this information and learn about population history. Over the last decade, large international genomic projects (e.g. the HapMap Project and the 1000 Genomes Project) have offered access to high quality data collected from thousands of individuals from a vast number of populations. Freely available to all, these databases offer the possibility to develop new methods to uncover the history of the peopling of the world by modern humans. Due to the complexity of the problem and the large amount of available data, all developed methods either simplify the model with strong assumptions or use an approximation; they also dramatically down-sample their data by either using fewer individuals or only portions of the genome. In this thesis, we present a novel method to jointly estimate the time of divergence of a pair of populations and their variable sizes, a previously unsolved problem. The method uses multiple regions of the genome with low recombination rate. For each region, we use an importance sampler to build a large number of possible genealogies, and from those we estimate the likelihood function of parameters of interest. By modelling the population sizes as piecewise constant within fixed time intervals, we aim to capture population size variation through time. We show via simulation studies that the method performs well in many situations, even when the model assumptions are not totally met. We apply the method to five populations from the 1000 Genomes Project, obtaining estimates of split times between European groups and among Europe, Africa and Asia. We also infer shared and non-shared bottlenecks in out-of- Africa groups, expansions following population separations, and the sizes of ancestral populations further back in time.
4

Models and analyses of chromosome evolution

Guerrero, Rafael Felipe 18 October 2013 (has links)
At the core of evolutionary biology stands the study of divergence between populations and the formation of new species. This dissertation applies a diverse array of theoretical and statistical approaches to study how chromosomes evolve. In the first chapter, I build models that predict the amount of neutral genetic variation in chromosomal inversions involved in local adaptation, providing a foundation for future studies on the role of these rearrangements in population divergence. In the second chapter, I use a large dataset of the geographic variation in frequency of a chromosomal inversion to infer natural selection and non-random mating, revealing that this inversion could be implicated in strong reproductive isolation between subpopulations of a single species. In the third chapter, I use coalescent models for recombining sex chromosomes coupled with approximate Bayesian computation to estimate the recombination rate between X and Y chromosomes in European tree frogs. This novel approach allows me to infer a rate so low that would have been hard to detect with empirical methods. In the fourth chapter, I study the theoretical conditions that favor the evolution of a chromosome fusion that reduces recombination between locally adapted alleles. / text
5

Population Differentiation, Historical Demography and Evolutionary Relationships Among Widespread Common Chaffinch Populations (Fringilla coelebs ssp.)

Samarasin-Dissanayake, Pasan 28 July 2010 (has links)
Widespread species that occupy continents and oceanic islands provide an excellent opportunity to study evolutionary forces responsible for population divergence. Here, I use multilocus coalescent based population genetic and phylogenetic methods to infer the evolutionary history of the common chaffinch (Fringilla coelebs), a widespread Palearctic passerine species. My results showed strong population structure between Atlantic islands. However, the two European subspecies can be considered one panmictic population based on gene flow estimates. My investigation of effects of sampling on concatenated and Bayesian estimation of species tree (BEST) methods demonstrated that concatenation is more sensitive to sampling than BEST. Furthermore, concatenation can provide incorrect evolutionary relationships with high confidence when sample size is small. In conclusion, my results suggest European ancestry for the common chaffinch and Atlantic islands appear to have been colonized sequentially from north to south via Azores.
6

Population Differentiation, Historical Demography and Evolutionary Relationships Among Widespread Common Chaffinch Populations (Fringilla coelebs ssp.)

Samarasin-Dissanayake, Pasan 28 July 2010 (has links)
Widespread species that occupy continents and oceanic islands provide an excellent opportunity to study evolutionary forces responsible for population divergence. Here, I use multilocus coalescent based population genetic and phylogenetic methods to infer the evolutionary history of the common chaffinch (Fringilla coelebs), a widespread Palearctic passerine species. My results showed strong population structure between Atlantic islands. However, the two European subspecies can be considered one panmictic population based on gene flow estimates. My investigation of effects of sampling on concatenated and Bayesian estimation of species tree (BEST) methods demonstrated that concatenation is more sensitive to sampling than BEST. Furthermore, concatenation can provide incorrect evolutionary relationships with high confidence when sample size is small. In conclusion, my results suggest European ancestry for the common chaffinch and Atlantic islands appear to have been colonized sequentially from north to south via Azores.
7

Inference of recombination properties in bacteria from whole genomes

Ansari, M. Azim January 2014 (has links)
The concept of species in bacteria is a matter of contention. The current definition is based on DNA-DNA hybridisation and does not account for evolutionary forces that are important in demarcating species. In this thesis we investigate two evolutionary forces that are important in speciation in bacteria, propose novel statistical models for them and infer parameters of interest. We present the first attempt at inferring the bias in the recombination process from whole bacterial genomes. Despite empirical evidence that recombination is biased and theoretical results that this bias is important in speciation, it is usually ignored. We propose a coalescent based model that accounts for the bias in the recombination process. We use approximate Bayesian computation for inference and describe an efficient method for simulating from the model. We show that our method performs well on simulated datasets and is robust to slight misspecification of the history of the samples. Application of our method to a Bacillus cereus dataset shows that it contain evidence that the recombination process depends on the evolutionary distance between donors and recipients. We demonstrate that the rate of bias in the recombination process for this dataset is far lower than what theoretical studies require for the spontaneous generation of populations that can be called species under neutral model. Next we propose a model for occurrence of adaptive events on a phylogenetic tree. We use the model to infer the boundaries of clusters on a phylogenetic tree that correspond to ecologically distinct lineages. we characterise our method using simulated datasets and show that it is conservative in estimating the number of adaptive events. Finally we apply our method to two bacterial datasets of Salmonella enterica and Vibrionaceae. We show that there is decisive evidence that isolates in these datasets partition into numerous ecologically distinct lineages and use our method to delineate the boundaries of these lineages.
8

Modelos com variação de estrutura populacional no tempo e estudo de suas consequencias geneticas / Models with variation in population structure through time and study of genetic consequences

Jesus, Flavia Fuchs de 25 August 2006 (has links)
Orientadores: Vera Nisaka Solferini, John Wakeley / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-07T07:06:17Z (GMT). No. of bitstreams: 1 Jesus_FlaviaFuchsde_D.pdf: 1710104 bytes, checksum: 93b6ea526e59cb2c39bdd80b1e9207ba (MD5) Previous issue date: 2006 / Resumo: A estrutura populacional é um dos principais fatores moldando os padrões de variabilidade genética no tempo e no espaço. Devido às flutuações climáticas que ocorreram durante o período Quaternário, muitas espécies podem ter sofrido redução e fragmentação populacional, ficando restritas a "refúgios" durante períodos glaciais e se expandindo novamente durante os interglaciais. Isto tem sido utilizado para explicar alguns padrões encontrados nas espécies atualmente. O presente trabalho consistiu no desenvolvimento e estudo de modelos para auxiliar na compreensão das conseqüências genéticas de mudanças cíclicas na estruturação e tamanho populacionais, como as que teriam ocorrido ao longo das flutuações climáticas do Quaternário. A redução populacional é capaz de causar redução do tamanho efetivo populacional, do tempo médio de coalescência e da variabilidade genética, ao passo que um aumento na subdivisão populacional pode ter o efeito oposto. Para investigar estes efeitos opostos, foram estudados dois modelos, ambos com alternância de duas fases correspondendo aos períodos glaciais e interglaciais. Em ambos os modelos permitiram-se mudanças na estrutura populacional, além de mudanças no tamanho populacional, de uma maneira cíclica. No primeiro modelo, fases totalmente panmíticas alternaram-se com fases totalmente estruturadas. A partir deste modelo, obteve-se uma expressão para a esperança do tempo de coalescência de duas seqüências e, a partir desta, uma expressão para a esperança do número de sítios polimórficos. Tanto o aumento do número de demes quanto da duração das fases estrutura das causaram um aumento do tempo de coalescência e dos níveis de variabilidade genética. Os resultados obtidos foram comparados com os que seriam esperados para uma população panrnítica de tamanho constante. Verificou-se que a estruturação pode superar o efeito da redução populacional durante os períodos glaciais. Especificamente, o número médio de sítios polimórficos pode ser maior no modelo proposto, mesmo quando o támanho populacional é muito reduzido durante as fases estruturadas. No segundo modelo, permitiu-se subdivisão populacional de acordo com o modelo de finitas ilhas em ambas as fases, com migração. O tamanho populacional, a taxa de migração e o número de demes variaram entre as fases. Para este modelo, além de uma expressão para a o tempo médio de coalescência, obteve-se também uma expressão para a distribuição dos tempos de coalescência de duas seqüências. As distribuições observadas foram muito diferentes do que seria esperado para uma população panrnítica de tamanho constante. Um tamanho populacional reduzido durante os períodos glaciais causou descontinuidades e picos múltiplos na distribuição dos tempos de coalescência, bem como uma redução dos tempo médios. O aumento da estrutura populacional, através da redução da taxa de migração, aumentou os tempos médios e atenuou os picos da distribuição. O tempo médio de coalescência, em geral, também aumentou em decorrência de um maior número de demes durante os períodos glaciais. Os resultados encontrados ajudam na compreensão das conseqüências genéticas de ciclos glaciais e, em especial, da importância da estrutura populacional na manutenção da variabilidade genética. Além' disso, oferecem uma possível explicação para padrões genéticos observados em muitas espécies em que genealogias gênicas muito longas são econtradas, com o ancestral comum mais recente antecedendo em muito ao último período glacial / Abstract: Population structure is one of the major factors shaping the pattems of genetic variation across time and space. Due to the climatic fluctuations of the Qua terna ry, several species may have suffered population reduction and fragmentation, becoming restricted to refugia during glacial periods and expanding again during interglacials. This has been used to explain some patterns currently observed in several species. The present work consisted in the development and study of models to help understand the genetic consequences of cyclic changes in population structure and size, such as the ones that may have occurred throughout the climatic fluctuations of the Quatemary. Population reduction may cause reduction in population effective size, mean coalescence time and genetic variation; whereas an increase in population subdivision may have the opposite effect. In order to investigate these two opposite effects, two models were studied, both with two alternating phases, corresponding to the glacial and interglacial periods. Both models included changes in population structure, besides those in population size, in a cyclic manner. In the first model, completely panrnictic phases were alternated with completely structured ones. Based on this model, an expression was derived for the expectation of coalescence times of two sequences and, from this, an expression for the expectation of the number of segregating sites. Both an increase in the number of demes and in the duration of the structured phases caused an increase in coalescence times and levels of genetic variation. The results obtained were compared to what would be expected for a panrnictic population of constant size. It was verified that population structure may outhweigh the effect of population reduction during glacial periods. Specifically, the mean number of segregating sites can be greater in the proposed model, even when population size is quite reduced during the structured phases. In the second mode!, population subdivision was allowed in both phases' - according the finite island model with migration. Population size, migration rate and number of demes varied between phases. For this model, besides an expression for the mean coalescence time, an expression for the distribution of coalescence times was also obtained. The distributions observed were quite different from what would be expected for a panrnictic population of constant size. Population reduction during glacial periods caused discontinuities and multiple peaks in the distribution of coalescence times, as well as a reduction in the expected times. An increase in population structure, through reducing migration rates, increased the mean times and attenuated the peaks of the distribution. Mean coalescence times, in general, also increased with a greater number of demes during glacial periods. The results obtained help understand the genetic consequences of glacial cycles, and, especially, point to the importance of population structure for the maintenance of genetic varlation. Besides, they offer a potential explanation for the genetic pattems observed in several species, for which long gene genealogies are observed, with the most recent ancestor predating by far the last glacial period / Doutorado / Genetica Animal e Evolução / Doutor em Genetica e Biologia Molecular
9

Using ancestral information to search for quantitative trait loci in genome-wide association studies

Thompson, Katherine L. 29 August 2013 (has links)
No description available.
10

Probabilité de fixation dans des modèles génétiques de populations à plusieurs allèles

Lahaie, Philippe January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.

Page generated in 0.072 seconds