• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Species Trees and Species Delimitation with Multilocus Data and Coalescent-based Methods: Resolving the Speciation History of the <em>Liolaemus darwinii</em> Group (Squamata, Tropiduridae)

Camargo Bentaberry, Arley 11 February 2011 (has links)
The inference of species boundaries and phylogenetic relationships are fundamental for evolutionary, ecological, and conservation studies. The resolution of species boundaries and the inference of phylogenetic relationships among species are required to define the units of analysis and to find the most closely related units for evaluating alternative models of speciation. I highlight lizards as model organisms for ecological and evolutionary studies, emphasizing their contributions to advances in understanding linkages between phylogeography and speciation. In this dissertation, I focus on the phylogenetic relationships of the lizards in the Liolaemus darwinii group, and the species boundaries of a nested clade within the group, the L. darwinii complex, because of several advantages that make these taxa ideal for phylogeographic studies of speciation. I infer a phylogeny for the L. darwinii group based on DNA sequences of 20 loci (19 nuclear and 1 mitochondrial) using species trees methods that take into account the incongruence among gene trees. I found the minimum number of loci, number of sequences per species, and number of base pairs per locus that should be included in an analysis for an accurate and precise estimate of the species tree. The species tree based on all available data support a clade of closely related species (L. darwinii, L. grosseorum, and L. laurenti) known as the L. darwinii complex. A new method for species delimitation using Approximate Bayesian Computation is introduced and is shown to accurately delimit species given that limited or no gene flow has occurred after divergence and despite biased estimates of demographic parameters. ABC analyses supported the distinctness of two lineages within L. darwinii under a model of speciation with gene flow. Based on the species tree and the species limits obtained in this dissertation, phylogenetic comparative methods can be carried out to address the morphological and ecological evolution in the L. darwinii group and several sister species can be used for testing the alternative speciation models via correlation analyses of genetic, morphological, and ecological datasets. Future studies should assess the role speciation due to adaptive processes and its association the species' ecological niches and life histories.
2

Taxonomic revision of Pimelodella Eigenmann & Eigenmann, 1888 (Siluriformes: Heptapteridae): an integrative proposal to delimit species using a multidisciplinary strategy / Revisão taxonômica de Pimelodella Eigenmann & Eigenmann, 1888 (Siluriformes: Heptapteridae): uma proposta integrativa para a delimitação de espécies com estratégias multidisciplinares

Motta, Veronica de Barros Slobodian 26 January 2018 (has links)
Primary taxonomic research in neotropical ichthyology still suffers from limited integration between morphological and molecular tools, despite major recent advancements in both fields. Such tools, if used in an integrative manner, could help in solving long-standing taxonomic problems. The genus Pimelodella Eigenmann & Eigenmann, 1888 is a perfect case for an integrative and multidisciplinary approach in taxonomy. Pimelodella is a genus of the Heptapteridae broadly distributed throughout trans- and cis-Andean South America, and one of the main components of Neotropical Ichthyofauna. Nowadays is the most species-rich genus of the family, with 79 valid species. However, the validity and delimitation of those species is extremely problematic, due their broad geographic distribution, conserved morphology, and ancient and imprecise descriptions. Pimelodella is undoubtedly one of the most severe taxonomic bottlenecks in neotropical ichthyology. This project presents a taxonomic revision of Pimelodella using an integrative morphological-molecular approach. The traditional taxonomic revision covers the genus in its entirety, with all the components of this kind of study. All types were examined, and the number of valid species herein recognized was reduced to 55 species, for which full descriptions are presented. The molecular taxonomy was done for a circumscribed subset of the genus, with representation enough to understand the molecular divergences and compare them with the traditional taxonomy results, allowing an evaluation of the results of the revision. / A pesquisa taxonômica primária ainda apresenta pouca integração entre as ferramentas morfológicas e moleculares para o estudo de peixes neotropicais, apesar de grandes avanços recentes em ambos os campos. Tais ferramentas, se usadas de maneira integrativa, poderiam solucionar grupos reconhecidos por representarem problemas taxonômicos renitentes. O gênero Pimelodella Eigenmann & Eigenmann, 1888 se enquadra como um ótimo caso para a aplicação de uma estratégia integrativa e multidisciplinar. Pimelodella é um gênero da família Heptapteridae, distribuído amplamente por drenagens sul-americanas trans- e cis-andinas e compreende um dos principais componentes da ictiofauna neotropical. Atualmente é reconhecido como o maior gênero da família, com 79 espécies válidas descritas. Entretanto, a validade e delimitação dessas espécies é problemática, devido à elevada diversidade do gênero, aliada à ampla distribuição, morfologia conservada e descrições antigas e imprecisas. Trata-se de um dos grandes gargalos taxonômicos na sistemática e taxonomia de peixes neotropicais. Este projeto apresenta uma revisão taxonômica de Pimelodella utilizando uma abordagem integrativa morfológica-molecular. A revisão taxonômica clássica cobre a integridade da diversidade do gênero, com todos os componentes deste tipo de estudo. Todos os tipos foram examinados, e o número de espécies validas é aqui reduzido para 55 espécies, para as quais descrições completas são apresentadas. A parte molecular foi realizada em um subgrupo delimitado, com diversidade suficiente para que as estimativas de divergência molecular pudessem ser comparadas aos resultados da revisão morfológica, fornecendo um modelo de avaliação para o restante da revisão.
3

Explaining the differences in African and Neotropical species richness by comparing diversification rates in Renealmia L.f. (Zingiberaceae)

Valderrama Escallon, Eugenio January 2016 (has links)
The well-known high species richness of the tropical forests is not uniform through its different regions; Africa is species-poor when compared to Southeast Asia and the Neotropical region. One of the hypotheses for differences between the richness in the Neotropics and Africa points to the importance of recent speciation in the Neotropics. This is considered in particular in Andean-centred taxa that probably diversified in response to the opportunities for speciation offered by the final uplift of the tropical Andes (during the past c. 25 million years [Ma] to the present, with higher rates on the past 10 Ma to the present). The aim of this thesis is to test this hypothesis in the genus Renealmia L.f. (Zingiberaceae), an Andean centred lineage (c. 64 Neotropical spp.) that also occurs in Africa (c. 17 spp.). A taxonomic account of the Colombian species (c. 32; the country with the most species) is presented, and three species new to science were discovered and are described in an updated revision. I designed a new approach for obtaining nuclear phylogenetic markers for estimating species-level phylogenies using transcriptomes for recent diversification that could be applied to samples from herbarium specimens. I generated de-novo transcriptomes for two Renealmia species and a relative in the subfamily Alpinioideae that were combined with data available in repositories to target low copy number and potentially orthologous genes with short introns. I obtained sequence data for eight introns (ranging from 219 to 924 bp) and an rRNA (ITS1 & ITS2) marker for 40 species and at least one marker for 64 species, comprising a total of 137 accessions of which 67.9%(93) were sampled from herbarium specimens. Gene and species-trees were estimated for the genus. I found that most of the subgroups based on morphological characters are supported by the molecular data but a possible combination of incomplete lineage sorting (related to recent radiations or large population sizes) and/or introgression through hybridisation makes difficult to solve the relationships among these subgroups. Finally I estimated and compared diversification rates of the Neotropical and African lineages using dated phylogenies based on the trees estimated. I used available and customized methods that take into account incomplete taxon sampling, the uncertainty in the phylogenetic relationships and the stochasticity inherent to diversifications processes. Differences in diversification rates between Africa and the Neotropics indicate increased speciation attributable to the Andean orogeny in the Neotropical lineages of Renealmia.
4

Conservation genetics and the Ctenosaura palearis clade

Pasachnik, Stesha Ann 01 August 2010 (has links)
We are now in the midst of a mass extinction crisis. The top threats to biodiversity include habitat destruction, pollution, over-harvesting, and invasive species. The field of conservation genetics seeks to understand these threats and devise management to preserve taxa with the ability to cope with environmental change. Preserving genetic variation and the processes in which variation is created and maintained is vital to long-term conservation goals. Limited conservation resources are cause for the prioritization of taxa and areas. Nine basic methods of prioritization have been developed. Though there are differences in these methods, and thus in the resulting target areas, many, including biodiversity hotspots, list Mesoamerica, in which the highest diversity of iguanids confined to a single genus, Ctenosaura, occur. Though ctenosaurs are the most diverse genus of iguanas, have the most Redlisted species, lack protection and are in danger of extinction, they have been overlooked. The Ctenosaura palearis complex, occurs in central Mesoamerica and is made up of four endangered species. In order aid in the conservation of this biodiversity, a multi-scale molecular evaluation of this complex was preformed. I first used a species tree approach to elucidate the relationships between the focal species, showing that these species have gone through recent and rapid speciation, resulting in four closely related endemics. Thus, the nominal groupings should be upheld and given individual protection. Second, I evaluated the degree to which gene flow from the widely distributed congener threatens the genetic distinctiveness of the endemic C. bakeri. Low levels of introgression indicated no current threat. Hybridization could increase if habitat destruction or changes in relative abundance increase the probability of interbreeding. Continued monitoring of this situation is justified. Third, I used a variety of population genetic techniques to elucidate the genetic structure within and among populations of C. melanosterna. These results indicate that the populations in the Valle de Aguán and Cayos Cochinos are not interchangeable thus protection of both areas is necessary, and extreme caution should be used when implementing breeding and translocation programs. Local conservation efforts may be evaluated and developed using this information.
5

Population Differentiation, Historical Demography and Evolutionary Relationships Among Widespread Common Chaffinch Populations (Fringilla coelebs ssp.)

Samarasin-Dissanayake, Pasan 28 July 2010 (has links)
Widespread species that occupy continents and oceanic islands provide an excellent opportunity to study evolutionary forces responsible for population divergence. Here, I use multilocus coalescent based population genetic and phylogenetic methods to infer the evolutionary history of the common chaffinch (Fringilla coelebs), a widespread Palearctic passerine species. My results showed strong population structure between Atlantic islands. However, the two European subspecies can be considered one panmictic population based on gene flow estimates. My investigation of effects of sampling on concatenated and Bayesian estimation of species tree (BEST) methods demonstrated that concatenation is more sensitive to sampling than BEST. Furthermore, concatenation can provide incorrect evolutionary relationships with high confidence when sample size is small. In conclusion, my results suggest European ancestry for the common chaffinch and Atlantic islands appear to have been colonized sequentially from north to south via Azores.
6

Population Differentiation, Historical Demography and Evolutionary Relationships Among Widespread Common Chaffinch Populations (Fringilla coelebs ssp.)

Samarasin-Dissanayake, Pasan 28 July 2010 (has links)
Widespread species that occupy continents and oceanic islands provide an excellent opportunity to study evolutionary forces responsible for population divergence. Here, I use multilocus coalescent based population genetic and phylogenetic methods to infer the evolutionary history of the common chaffinch (Fringilla coelebs), a widespread Palearctic passerine species. My results showed strong population structure between Atlantic islands. However, the two European subspecies can be considered one panmictic population based on gene flow estimates. My investigation of effects of sampling on concatenated and Bayesian estimation of species tree (BEST) methods demonstrated that concatenation is more sensitive to sampling than BEST. Furthermore, concatenation can provide incorrect evolutionary relationships with high confidence when sample size is small. In conclusion, my results suggest European ancestry for the common chaffinch and Atlantic islands appear to have been colonized sequentially from north to south via Azores.
7

Ecophysiology of Juniperus virginiana encroachment in Ohio

Hamati, Samia 28 April 2022 (has links)
No description available.
8

Understanding the Diversification of Central American Freshwater Fishes Using Comparative Phylogeography and Species Delimitation

Bagley, Justin C 01 December 2014 (has links) (PDF)
Phylogeography and molecular phylogenetics have proven remarkably useful for understanding the patterns and processes influencing historical diversification of biotic lineages at and below the species level, as well as delimiting morphologically cryptic species. In this dissertation, I used an integrative approach coupling comparative phylogeography and coalescent-based species delimitation to improve our understanding of the biogeography and species limits of Central American freshwater fishes. In Chapter 1, I conducted a literature review of the contributions of phylogeography to understanding the origins and maintenance of lower Central American biodiversity, in light of the geological and ecological setting. I highlighted emerging phylogeographic patterns, along with the need for improving regional historical biogeographical inference and conservation efforts through statistical and comparative phylogeographic studies. In Chapter 2, I compared mitochondrial phylogeographic patterns among three species of livebearing fishes (Poeciliidae) codistributed in the lower Nicaraguan depression and proximate uplands. I found evidence for mixed spatial and temporal divergences, indicating phylogeographic “pseudocongruence” suggesting that multiple evolutionary responses to historical processes have shaped population structuring of regional freshwater biota, possibly linked to recent community assembly and/or the effects of ecological differences among species on their responses to late Cenozoic environmental events. In Chapter 3, I used coalescent-based species tree and species delimitation analyses of a multilocus dataset to delimit species and infer their evolutionary relationships in the Poecilia sphenops species complex (Poeciliidae), a widespread but morphologically conserved group of fishes. Results indicated that diversity is underestimated and overestimated in different clades by c. ±15% (including candidate species); that lineages diversified since the Miocene; and that some evidence exists for a more probable role of hybridization, rather than incomplete lineage sorting, in shaping observed gene tree discordances. Last, in Chapter 4, I used a comparative phylogeographical analysis of eight codistributed species/genera of freshwater fishes to test for shared evolutionary responses predicted by four drainage-based hypotheses of Neotropical fish diversification. Integrating phylogeographic analyses with paleodistribution modeling revealed incongruent genetic structuring among lineages despite overlapping ancestral Pleistocene distributions, suggesting multiple routes to community assembly. Hypotheses tests using the latest approximate Bayesian computation model averaging methods also supported one pulse of diversification in two lineages diverged in the San Carlos River, but multiple divergences of three lineages across the Sixaola River basin, Costa Rica, correlated to Neogene sea level events and continental shelf width. Results supported complex biogeographical patterns illustrating how species responses to historical drainage-controlling processes have influenced Neotropical fish diversification.

Page generated in 0.047 seconds