• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 218
  • 32
  • 29
  • 23
  • 15
  • 9
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 401
  • 109
  • 61
  • 59
  • 58
  • 56
  • 44
  • 43
  • 39
  • 38
  • 30
  • 30
  • 29
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Swash zone dynamics of coarse-grained beaches during energetic wave conditions

Almeida, Luis Pedro January 2015 (has links)
Coarse-grained beaches, such as pure gravel (PG), mixed sand-gravel (MSG) and composite (CSG) beaches, can be considered as one of the most resilient non-cohesive morpho-sedimentary coastal environments to energetic wave forcing (e.g., storms). The hydraulically-rough and permeable nature of gravel (D50 > 2 mm), together with the steep (reflective) beach face, provide efficient mechanisms of wave energy dissipation in the swash zone and provide a natural means of coastal defence. Despite their potential for shore protection very little is known about the response of these environments during high energetic wave conditions. Field measurements of sediment transport and hydrodynamics on coarse-grained beaches are difficult, because there are few instruments capable of taking direct measurements in an energetic swash zone in which large clasts are moving, and significant morphological changes occur within a short period of time. Remote sensing methods emerge in this context as the most appropriate solution for these types of field measurement. A new remote sensing method, based around a mid-range (~ 50 m) 2D laser-scanner was developed, which allows the collection of swash zone hydrodynamics (e.g., vertical and horizontal runup position, swash depth and velocity) and bed changes on wave-by-wave time scale. This instrument allowed the complete coverage of the swash zone on several coarse-grained beaches with a vertical accuracy of approximately 0.015 m and an average horizontal resolution of 0.07 m. The measurements performed with this new methodology are within the accuracy of traditional field techniques (e.g. video cameras, ultrasonic bed-level sensors or dGPS). Seven field experiments were performed between March 2012 and January 2014 on six different coarse-grained beaches (Loe Bar, Chesil, Slapton, Hayling Island, Westward Ho! and Seascale), with each deployment comprising the 2D laser-scanner together with complementary in-situ instrumentation (e.g., pressure transducer, ADV current meter). These datasets were used to explore the hydrodynamics and morphological response of the swash zone of these different environments under different energetic hydrodynamic regimes, ranging from positive, to zero, to negative freeboard regimes. With reference to the swash zone dynamics under storms with positive freeboard regimes (when runup was confined to the foreshore) it was found that extreme runup has an inverse relationship with the surf scaling parameter (=2Hs /gTptan2). The highest vertical runup excursions were found on the steepest beaches (PG beaches) and under long-period swell, while lower vertical runup excursions where linked to short-period waves and beaches with intermediate and dissipative surf zones, thus demonstrating that the contrasting degree of wave dissipation observed in the different types of surf zones is a key factor that control the extreme runup on coarse-grained beaches. Contrasting morphological responses were observed on the different coarse-grained beaches as a result of the distinct swash\surf zone hydrodynamics. PG beaches with narrow surf zone presented an asymmetric morphological response during the tide cycle (accretion during the rising and erosion during the falling tide) as a result of beach step adjustments to the prevailing hydrodynamics. On dissipative MSG and CSG beaches the morphological response was limited due to the very dissipative surf zone, while on an intermediate CSG beach significant erosion of the beach face and berm was observed during the entire tide cycle as a result of the absence of moderate surf zone wave dissipation and beach step dynamics. Fundamental processes related to the link between the beach step dynamics and the asymmetrical morphological response during the tidal cycle were for the first time measured under energetic wave conditions. During the rising tide the onshore shift of the breaking point triggers the onshore translation of the step and favors accretion (step deposit development), while during the falling tide the offshore translation of the wave breaking point triggers retreat of the step and favours backwash sediment transport (erosion of the step deposit). Under zero and negative freeboard storm regimes (when runup exceeds the crest of the barrier or foredune), field measurements complimented by numerical modelling (Xbeach-G) provide clear evidence that the presence of a bimodal wave spectrum enhances the vertical runup and can increase the likelihood of the occurrence of overtopping and overwash events over a gravel barrier. Most runup equations (e.g., Stockdon et al., 2006) used to predict the thresholds for storm impact regime (e.g., swash, overtopping and overwash) on barriers lack adequate characterisation of the full wave spectra; therefore, they may miss important aspects of the incident wave field, such as wave bimodality. XBeach-G allows a full characterization of the incident wave field and is capable of predicting the effect of wave spectra bimodality on the runup, thus demonstrating that is a more appropriate tool for predicting the storm impact regimes on gravel barriers. Regarding the definition of storm impact regimes on gravel barriers, it was found that wave period and wave spectra bimodality are key parameters that can affect significantly the definition of the thresholds for these different regimes. While short-period waves dissipate most of their energy before reaching the swash zone (due to breaking) and produce short runup excursions, long-period waves arrive at the swash zone with enhanced heights (due to shoaling) and break at the edge of the swash, thus promoting large runup excursions. When offshore wave spectrum presents a bimodal shape, the wave transformation on shallow waters favours the long period peak (even if the short-period peak is the most energetic offshore) and large runup excursions occur. XBeach-G simulations show that the morphological response of fine gravel barriers is distinct from coarse gravel barriers under similar overtopping conditions. While on coarser barriers overtopping regimes are expected to increase the crest elevation and narrow the barrier, on fine barriers sedimentation occurs on the back of the barrier and in the lower beach face. Such different sedimentation patterns are attributed to the different hydraulic conductivity of the different sediment sizes which control the amount of flow dissipation (due to infiltration) and, therefore, the capacity of the flow to transport sediment across and over the barrier crest. The present findings have significantly improved our conceptual understanding of the response of coarse-grained beaches during storms. A new field technique to measure swash dynamics in the field was developed during this thesis and has great potential to become widely used in a variety of coastal applications.
22

Gamification to Solve a Mapping Problem in Electrical Engineering

Balavendran Joseph, Rani Deepika 05 1900 (has links)
Coarse-Grained Reconfigurable Architectures (CGRAs) are promising in developing high performance low-power portable applications. In this research, we crowdsource a mapping problem using gamification to harnass human intelligence. A scientific puzzle game, Untangled, was developed to solve a mapping problem by encapsulating architectural characteristics. The primary motive of this research is to draw insights from the mapping solutions of players who possess innate abilities like decision-making, creative problem-solving, recognizing patterns, and learning from experience. In this dissertation, an extensive analysis was conducted to investigate how players' computational skills help to solve an open-ended problem with different constraints. From this analysis, we discovered a few common strategies among players, and subsequently, a library of dictionaries containing identified patterns from players' solutions was developed. The findings help to propose a better version of the game that incorporates these techniques recognized from the experience of players. In the future, an updated version of the game that can be developed may help low-performance players to provide better solutions for a mapping problem. Eventually, these solutions may help to develop efficient mapping algorithms, In addition, this research can be an exemplar for future researchers who want to crowdsource such electrical engineering problems and this approach can also be applied to other domains.
23

Coarse-grained Simulations for Poly (ethylene oxide) Linear chains and [2]Catenanes in water

Chen, Jiuke 03 May 2021 (has links)
No description available.
24

In-Plant Testing of the Hydrofloat Separator for Coarse Phospahte Recovery

Barbee, Christopher John 07 February 2008 (has links)
The HydroFloat technology was specifically developed to upgrade phosphate sands that are too coarse to be efficiently recovered by conventional flotation methods. In this novel process, classified feed is suspended in a fluidized-bed and then aerated. The reagentized phosphate particles become buoyant and report to the product launder after encountering and attaching to the rising air bubbles. Simultaneously, the hydrophilic particles are rejected as a high solids content (65-70%) underflow. The fluidized bed acts as a "resistant" layer through which no bubble/particle aggregates can penetrate. As a result, the HydroFloat also acts as a density separator that is capable of treating much coarser particles as compared to traditional flotation processes. In addition, the high solids content of the teeter bed promotes bubble-particle attachment and reduces the cell volume required to achieve a given capacity. To fully evaluate the potential advantages of the HydroFloat technology, a 5-tph test circuit was installed and evaluated in an industrial phosphate beneficiation plant. Feed to the test circuit was continuously classified, conditioned and upgraded using the HydroFloat technology. The test results indicated that the HydroFloat could produce a high-grade phosphate product in a single stage of separation. Product quality ranged between 70-72% BPL (bone phosphate of lime = 2.185 x %P2O5) and 5-10% insols (acid insoluble solids). BPL recoveries exceeded 98% at feed rates greater than 2.0 tph per ft^2 of separator cross-sectional area. These results were superior to traditional column flotation, which recovered less than 90% of the valuable product at a capacity of less than 1 tph per ft^2. / Master of Science
25

Design and Implementation of a Multi-Block Parallel Algorithm for Solving Navier-Stokes Equations on Structured Grids

Mittadar, Nirmal Tatavalli 03 August 2002 (has links)
A coarse-grain parallel multi-block algorithm was designed for CHEQNS - a multi-block solver for solving chemically reacting flows in local chemical equilibrium and has been implemented using the Message Passing Interface (MPI). The parallel implementation confirms to the Single Program Multiple Data (SPMD) model. The parallel implementation uses synchronous update of fluxes across the block-block boundaries. The solution algorithm consists of block-decoupled Gauss-Seidel iterations. The coupling between the sub-domains on different processors occurs at the Newton iteration level. The parallel implementation is general and can accept an arbitrary arrangement of blocks in multi-block configuration with multiple blocks per processor. The parallel implementation has been verified against the results from the sequential multi-block solver for different types of flows. The parallel performance has been studied in terms of speed-up and efficiency. The influence of parallelization on the convergence was also studied.
26

Straight Skeleton Survey Adjustment Of Road Centerlines From Gps Coarse Acquisition Data: A Case Study In Bolivia

Raleigh, David Baring 29 September 2008 (has links)
No description available.
27

An Analysis of the Ecology and Public Perception of Coarse Woody Debris in Virginia

Fuhrman, Nicholas E. 21 July 2004 (has links)
Coarse woody debris (CWD) is an important habitat component for wildlife, fish, and plants and is important in nutrient cycling and soil formation. Knowledge of the volume, distribution, and use of CWD across Virginia would be useful to forest managers modeling nutrient budgets in southeastern forests and is important to wildlife management efforts. Knowledge of the effectiveness of informational brochures and cooperative learning activities/presentations at influencing public perception of CWD is important to program design and evaluation efforts in teaching and extension. The objectives of this study were to quantify the relationship between forest cover type and CWD volume, correlate CWD volume with small mammal and bird activity, distribute information on the advantages and disadvantages of CWD using informational brochures and cooperative learning activities/presentations, and compare the effectiveness of such teaching techniques at influencing public perception of CWD. The volume and wildlife use of CWD was assessed within 12 mature second-growth stands in Virginia. Volume of CWD was measured using fixed-area plots. Use of CWD by small mammals and birds was assessed by noting bodily, foraging, or movement evidence. Pre- and post-survey instruments were used to evaluate how perceptions were altered in first year college students who either reviewed an informational brochure or participated in a cooperative learning activity/presentation. Results suggested that the management of CWD for wildlife was most needed in southeastern Virginia where CWD volumes were lowest and that the value of CWD for wildlife was best conveyed through cooperative learning activities/presentations and may be important to landowner education efforts. Results suggested that management efforts to increase CWD volumes in Virginia should focus on coniferous dominated stands where CWD volumes were lowest. Such a finding, combined with the knowledge that the value of CWD was best conveyed through presentations, suggests that landowners of coniferous woodlots could be effectively educated with presentations. Given that brochures were more effective for females than males, brochures addressing natural resource issues might be the most appropriate, cost effective method of education at events that target female audiences. Knowledge gained from this study that CWD management for wildlife would be most appropriate in western Virginia where CWD was most used by wildlife for travel and that presentations were most effective at reaching suburban participants may be important to outreach program design efforts. Regardless of academic major, presentations were more effective at generating positive attitudes toward CWD. The results of this study suggest that the choice between informational brochures and presentations for influencing public perceptions of CWD will likely be influenced by the demographics of the target audience and the relevance of the topic locally. / Master of Science
28

Uso de estratégias baseadas em conhecimento para algoritmos genéticos aplicados à predição de estruturas tridimensionais de proteínas / Knowledge-based Approach to Genetic Algorithms for the Protein Structure Prediction Problem

Oliveira, Lariza Laura de 20 May 2011 (has links)
Proteínas desempenham uma grande variedade de funções biológicas. O conhecimento da estrutura tridimensional proteica pode ajudar no entendimento da função desempenhada. De acordo com a hipótese de Anfisen, a estrutura terciária nativa de uma proteína pode ser determinada a partir da informação contida na sequência primária, o que permitiria que métodos computacionais poderiam ser usados para predizer estruturas terciárias quando a primária estiver disponível. No entanto, ainda não existe uma ferramenta computacional capaz de predizer a estrutura tridimensional para uma grande variedade de proteínas. Desse modo, o problema de Predição de Estruturas de Proteínas (PEP) permanece como um desafio para a Biologia Molecular. A conformação nativa de uma proteína é frequentemente a configuração termodinamicamente mais estável, ou seja, que possui menor energia livre. Assim, PEP pode ser vista como um problema de otimização, onde a estrutura com menor energia livre deve ser encontrada dentre todas as possíveis. Entretanto, este é um problema NP-completo, no qual métodos tradicionais de otimização, em geral, não apresentam um bom desempenho. Algoritmos Genéticos (AGs), devido às suas características, são interessantes para essa classe de problemas. O principal objetivo desse trabalho é verificar se a adição de informação pode ser útil aos AGs aplicados em PEP, valendo-se dede modelos moleculares simplificados. Cada indivíduo do AG representa uma solução que, neste caso, é uma possível conformação que será avaliada por um campo de força. Dessa forma, o indivíduo é codificado por um conjunto de ângulos de torção de cada aminoácido. Para auxiliar no processo de busca, bases de dados compostas de ângulos determinados por cristalografia e RNM são utilizadas. Com o objetivo de guiar o processo de busca e manter a diversidade nos AGs, duas estratégias são aqui testadas: Imigrantes Aleatórios e Imigrantes por Similaridade. A última delas foi criada baseando-se na similaridade da sequência primária. Além disso, é investigado neste trabalho o uso de um campo de força coarse grained, que utiliza os átomos de carbono- para representar a cadeia proteica, para avaliar os indivíduos do AG. / Proteins exhibit an enormous variety of biology functions. The knowledge of tertiary structures can help the understanding of the proteins function. According to Anfisen, the native tertiary structure of a protein can be determined by its primary structure information, what could allow that computational methods could be used to predict the tertiary structure when the primary structure is available. However, there is still not a computational tool to solve the structure prediction problem for a large range of proteins. In this way, Protein Structure Prediction (PSP) has been a challenge to Molecular Biology. The conformation of native protein is usually the thermodynamically most stable configuration, i.e., the one having the lowest free energy. Hence, PSP can be viewed as a problem of optimization, where the structure with the lowest free energy should be found among all possible structures. However, this is an NP-problem, where traditional optimization methods, in general, do not have good performance. Genetic algorithms (GAs), due to their characteristics, are interesting for this class of problems. In recent years, there is a growing interest in using GAs for the protein structure prediction problem. The main objective of this work is to verify the addition of useful information to GAs employed in PSP. Each individual of the GA represents a solution for the optimization problem which is, in this case, a possible conformation that will be evaluated by a force field function. Thus, an individual is encoded by a set of torsion angles of each amino acid. In order to reduce the search space, a database composed of angles, determined by crystallography and NMR, is used. With the aim to guide the final search process and maintain diversity in GAs, two strategies were employed here: Random Immigrants and Similarity-based Immigrants. The last strategy was based on similarity of primary amino acid sequence. Furthermore, in this work, a coarse-grained force field, which uses -carbon to represent the protein backbone was employed to evaluate the individuals of GA.
29

Coarse Cohomology with twisted Coefficients

Hartmann, Elisa 25 February 2019 (has links)
No description available.
30

The imprint of coarse woody debris on soil biological and chemical properties in the western Oregon Cascades

Spears, Julie D. H. 03 April 2002 (has links)
The abundance and spatial heterogeneity of coarse woody debris (CWD) on the forest floor is a prominent feature of Pacific Northwest (PNW) forest ecosystems. The effect of CWD on soil solution chemistry, nutrient cycling and availability, soil physical structure and formation of soil organic matter, however, remains unknown. Therefore, studies on the spatial and temporal imprint of CWD on forest soils are timely and can fill critical gaps in our understanding of the role of CWD in PNW forest ecosystems. I investigated the effect of CWD on soils and soil solution at the H.J. Andrews Experimental Forest in a two-part study. Mineral soils were sampled beneath CWD to a depth of 60 cm. The top 15 cm of soil was also repeatedly sampled for seasonal differences. Control leachate, CWD leachate and soil solution from control soils and from under CWD were collected from the fall of 1999 until the spring of 2001. Results indicated that CWD leachates were much more acidic than water leaching from the forest floor without CWD. Intermediate stages of CWD decomposition had the highest concentrations of hydrophobic compounds and polyphenols of all stages of decay. Correspondingly, surface soils sampled from under well-decayed CWD were more acidic and had more exchangeable acidity and aluminum, and a lower percent base saturation than soils under the forest floor. Nutrient pools were not different under CWD, although nitrogen fluxes were slower under CWD. Although we had hypothesized that the spatial variability of CWD inputs may affect forest soils under CWD, we found that the spatial variability is much more temporal than I had hypothesized and is limited to the top five centimeters of the underlying soil. / Graduation date: 2002

Page generated in 0.0539 seconds