• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 813
  • 301
  • 164
  • 115
  • 62
  • 41
  • 32
  • 26
  • 16
  • 16
  • 14
  • 8
  • 7
  • 6
  • 5
  • Tagged with
  • 1891
  • 240
  • 219
  • 212
  • 172
  • 152
  • 151
  • 133
  • 131
  • 117
  • 115
  • 105
  • 104
  • 99
  • 99
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Simultaneous chrominizing-aluminizing of iron and iron-base alloys /

Wang, Da-yung January 1987 (has links)
No description available.
92

Novel Colloidal Methods for Fabrication of Composite Coatings

Liu, Xinqian January 2022 (has links)
Polymer coatings are thin films of polymer deposited on different substrates for various applications. Such surface coatings can serve a functional purpose (adhesives, photographic films), protective purpose (anticorrosion), or decorative purpose (paint). Additionally, their composite coatings containing ceramic, or metal particles are often used to enhance durability, functionality, or aesthetics. Electrophoretic deposition (EPD) and dip coating are two promising methods for the fabrication of polymer and composite coatings due to the ease of fabrication, low cost, and high-volume production. EPD involves the electrophoresis of charged particles and their deposition on the electrode surface, which requires the colloidal particles to be charged in a stable suspension as a precursor solution for deposition. Many polymers cannot be deposited by EPD directly because of their charge neutrality and poor dispersion. Therefore, it is critical to develop efficient charging dispersants to modify electrically neutral polymers for their EPD. The approach was inspired by the strong solubilization power of bile acids in the human body. Two types of bile salts, cholic acid sodium salt and sodium chenodeoxycholate, and three types of biosurfactants, carbenoxolone sodium salt, glycyrrhizic acid, and 18β-glycyrrhetinic acid, which share similar structures with bile salts, were discovered for charging, dispersion, and EPD of different materials. The electrically neutral polymers (PTFE and PVDF), chemically inert materials (diamond, nanodiamond, graphene, carbon dots, carbon nanotubes and Zr-doped hydrotalcite (MHT)), and their composites can be well dispersed in suspension and deposited using these bio-surfactants as dispersants. It was found that the unique chemical structures of these biomolecules play vital roles in the surface modification and EPD of different materials. Moreover, the deposited polymer (PVDF, PTFE) and composite (PTFE-MHT) coatings can provide outstanding corrosion protection for stainless steel. The biomimetic and versatile strategy opens a way for the deposition of other electrically neutral materials through EPD. These findings also provide a promising strategy for selecting new dispersants for EPD. The deposition of high molecular weight (MW) polymers such as poly(ethyl methacrylate) (PEMA) at high concentrations in non-toxic solvents continues to be a challenge for dip coating. In this work, we firstly proposed using water-isopropanol as a co-solvent to dissolve high MW PEMA at high concentrations. It was found that water molecules can solvate carbonyl groups of PEMA and facilitate their dissolution. This method avoided the usage of toxic solvents and a long-time heating procedure for their removal. Moreover, it allows the fabrication of high-quality PEMA and composite coatings containing different flame retardant materials (FRMs), including double hydroxide LiAl2(OH)7.2H2O (LiAlDH), huntite, halloysite and hydrotalcite, through the dip coating method. A novel solid state synthesis method was proposed to fabricate LiAlDH, which is promising for the fabrication of other advanced DHs. Such composite coatings combined advanced properties of PEMA and functional properties of FRMs, such as corrosion inhibition and FR properties. / Thesis / Doctor of Engineering (DEng) / Polymer and composite coatings have been utilized for a wide range of applications due to their barrier properties, scratch and abrasion resistance, chemical resistance, and biocompatibility. Various techniques have been developed to fabricate polymer and composite coatings, such as electrophoretic deposition (EPD) and the dip coating method. However, limitations remain. EPD unitizes an electrical field to drive charged particles in a suspension toward conductive substrates to achieve film deposition. This process requires a stable suspension with charged particles, therefore, the electroneutral polymers present difficulties in their EPD. In addition, dissolving high molecular weight polymers at high concentrations in a non-toxic solvent is currently challenging, which is vital to utilize dip coating technique. The objective of this work was to develop advanced charging dispersants for EPD of electroneutral polymers and non-toxic solvents for dip coating of high molecular weight polymers. New biomimetic and versatile approaches have been developed for EPD of different electrically neutral polymers, chemically inert materials, and their composite coatings. A non-toxic co-solvent was proposed to dissolve high molecular weight polymer at high concentration for dip coating of the polymer and its composite coatings containing flame retardant materials. The results presented in this work showed the formation of high-quality films with multifunctionality and paved new strategies for further developments.
93

Heating Power of Coated FeCoV Magnetic Nanoparticles

Alshammari, Hanaa Ali 31 May 2016 (has links)
No description available.
94

Investigations on Multiscale Fractal-textured Superhydrophobic and Solar Selective Coatings

Jain, Rahul 21 August 2017 (has links)
Functional coatings produced using scalable and cost-effective processes such as electrodeposition and etching lead to the creation of random roughness at multiple length scales on the surface. The first part of thesis work aims at developing a fundamental mathematical understanding of multiscale coatings by presenting a fractal model to describe wettability on such surfaces. These surfaces are described with a fractal asperity model based on the Weierstrass-Mandelbrot function. Using this description, a model is presented to evaluate the apparent contact angle in different wetting regimes. Experimental validation of the model predictions is presented on various hydrophobic and superhydrophobic surfaces generated on several materials under different processing conditions. Superhydrophobic surfaces have myriad industrial applications, yet their practical utilization has been severely limited by their poor mechanical durability and longevity. Toward addressing this gap, the second and third parts of this thesis work present low cost, facile processes to fabricate superhydrophobic copper and zinc-based coatings via electrodeposition. Additionally, systematic studies are presented on coatings fabricated under different processing conditions to demonstrate excellent durability, mechanical and underwater stability, and corrosion resistance. The presented processes can be scaled to larger, durable coatings with controllable wettability for diverse applications. Apart from their use as superhydrophobic surfaces, the application of multiscale coatings in photo-thermal conversion systems as solar selective coatings is explored in the final part of this thesis. The effects of scale-independent fractal parameters of the coating surfaces and heat treatment are systematically explored with respect to their optical properties of absorptance, emittance, and figure of merit (FOM). / Master of Science
95

Microstructural Developments and Mechanical Properties of Electroless Ni-B Coating

Pal, Soupitak January 2013 (has links) (PDF)
Phase transformation behavior, micro structural development, mechanical and tribological properties of electroless Ni-B coating was characterized using different characterization techniques. As deposited electroless Ni-B coating containing 94 wt. % of NI and 6 wt. % of B is amorphous. It crystallizes via two exothermic reactions one at 3000C and another at 430˚C. It has been observed that there is also slow evolution of the heat in between this two exothermic reactions. XRD studies display that as deposited coating undergoes multi-stage crystallization events. At the first exothermic peak NI3B phases crystallizes, in between two a phase mixture of Ni and Ni3B and at the second exothermic peak NI2B + Ni3B crystallizes. Evolution of the free Ni in the complete crystalline coating is not predicted by the equilibrium phase diagram of the Ni-B system. Microscopic observation of the as deposited coating displays a novel compositionally modulated microstructure comprises of different length scales ranging from micrometer to nanometer level. In situ TEM study along with composition analysis were carried out in order to track the crystallization pathway and microstructural development. This kind of composition fluctuation of the coating is intrinsic to the deposition process. In best of our knowledge this kind of microstructure is the first time reported example of phase separation in a binary metal-metalloid system without spinoidal decomposition. Effect of this kind of microstructure and phase evolution on the mechanical and tribological properties of the coating is very profound. Increase in the nanocrystalline borides content of the coating increases the hardness value of the coating as well as improved tribological properties of the coating. In the low load regime (5 N and less) wear resistance of the coating is provided by the oxide layer formed on the wear track by preventing the direct contact between the coating and counterface. Local temperature rise due to friction and nancrystalline nature of the coating enhances the tendency of oxide layer formation. Characterization of the oxide layer was carried out using SEM, EPMA, Nanoindenation and Raman Spectroscopy. Whereas in case high load regime (above 5 N) this oxide layer breaks off and direct contact between the coating and counterface is established. This increases the wear rate of the coating. Material is removed from the coating through subsurface crack formation and propagation by low cycle fatigue mechanism. Effect of amorphous phase and free Ni on the tribological properties of the coating is detrimental by promoting a strong adhesion between the coating and steel counter face, whereas nanocrystalline borides shows opposite effect. A nano tribological studies using lateral force microscopy shows that nanocrystalline borides decreases the coefficient of friction of the coating. Phase evolution and microstructural characterization also shows that above 450˚C there is a significant diffusion of the boron from the coating to the steel substrate. This restrict the high temperature tribological studies of the coating up to a temperature range of 450˚C. Wear data along with worn track characterization demonstrate the fact that above 100˚C even in low load regime wear rate is very high. Wear of the coating is mainly governed by the plastic deformation of the coating and breakage of the protective oxide layer. Analytical calculation as well experimental observation shows that during the time of wear the temperature at the local contact region reaches a very high value even up to 1100˚C. This may soften the coating and causes the wear though plastic deformation of the coating.
96

THE ION-ASSISTED DEPOSITION OF OPTICAL THIN FILMS.

TARGOVE, JAMES DONALD. January 1987 (has links)
The columnar microstructure of most thermally evaporated thin films detrimentally affects many of their properties through a reduction in packing density. In this work, we have investigated ion-assisted deposition as a means of disrupting this columnar growth for a number of coating materials. A Kaufman hot-cathode ion source bombarded thermally evaporated films with low-energy (< 1000 eV) positive ions during deposition in a cryopumped box coater. We have investigated MgF₂, Na₃AIF₆, AIF₃, LaF₃, CeF₃, NdF₃, Al₂O₃, and AIN. Argon ion bombardment of the fluoride coatings increased their packing densities dramatically. We achieved packing densities near unity without significant absorption for MgF₂, LaF₃, and NdF₃, while Na₃AIF₆, AIF₃, and CeF₃ began to absorb before unity packing density could be achieved. Fluorine was preferentially sputtered by the ion bombardment, creating anion vacancies. The films adsorbed water vapor and hydroxyl radicals from the residual chamber atmosphere. These filled the vacancy sites, eliminating absorption in the visible, but the oxygen complexes caused increased absorption in the ultraviolet. For LaF₃ and NdF₃, a sufficient amount of oxygen caused a phase transformation from the fluoride phase to an oxyfluoride phase. The refractive indices of Al₂O₃ films increased with ion bombardment. Values as high as 1.70 at 350 nm were achieved with bombardment by 500 eV oxygen ions. Since all of the Al₂O₃ films had packing densities near unity and were amorphous, we postulate that the increase in refractive index was due to a change in amorphous networking. Aluminum nitride was deposited by bombarding thermally evaporated aluminum with nitrogen ions. Films with N:Al ratios of 0.5-1.5 could be deposited by varying the deposition conditions. Films with low absorption for wavelengths longer than 1 μm could be deposited. Annealing the films at 500°C eliminated absorption at wavelengths longer than 500 nm.
97

Study of the interaction between a gas flow and a liquid film entrained by a moving surface

Gosset, Anne M. 27 February 2007 (has links)
This thesis is dedicated to the study of the interaction between a gas jet and a liquid film on a moving surface. This flow configuration corresponds to the gas-jet wiping technique, which is widely used in the coating industry to reduce and control the thickness of a liquid film dragged by a moving substrate. For that purpose, a turbulent slot jet impinges on the liquid surface, involving a runback flow and consequently a lower coating thickness downstream wiping. The different process parameters (nozzle pressure, nozzle to substrate standoff distance, slot width, substrate speed) allow controlling the final film thickness. This metering technique is very common in coating processes, such as the application of gelatin layers on photographic films. The first part of this thesis deals with the prediction of the mean jet wiping flow, i.e. the film thickness distribution in the wiping region. A lubrication model is developed for that purpose, which is simplified to a zero-dimensional model giving directly the final thickness In the second part, the prediction of splashing occurrence in jet wiping is addressed. The splashing phenomenon in jet wiping is featured by the ejection of droplets from the runback flow, and it constitutes a physical limit to the process. An experimental investigation is conducted on a water model facility, and based on a phenomenological description, a dimensionless correlation in terms of film Reynolds number and jet Weber number is derived for splashing occurrence. The latter is perfectly well validated with observations on industrial lines. The last part of this thesis is dedicated to the study of the unsteady phenomena occurring on the free surface of the liquid film downstream wiping. This phenomenon has never been understood nor characterized up to now. In the present research, undulation is investigated both theoretically and experimentally. Two model test facilities with dedicated measurement techniques have been designed and constructed. They allow performing parametric studies of the undulation characteristics (amplitude, wavelength, wave velocity), and analyzing the jet/film interaction.
98

PHYSICAL AND CHEMICAL CHARACTERISTICS OF THE ZINCATE IMMERSION PROCESS FOR ALUMINUM AND ALUMINUM ALLOYS.

ZIPPERIAN, DONALD CHARLES. January 1987 (has links)
A detailed experimental study has been carried out to investigate the zincate immersion deposition process for 99.99%, 6061, and 356-T6 aluminum samples. In particular, the effect of iron and tartrate in the immersion bath, the aluminum surface preparation, and the relationship of the first immersion step to the second immersion step were investigated by chemical, electrochemical (polarization and rest potentials), and surface analytical scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES) techniques. Eh-pH diagrams were constructed to determine the most stable zinc, iron, and aluminum species in solution. These diagrams predict that ferrous and ferric ions, as well as aluminum should form stable complexes with tartrate at the typical immersion deposition conditions (Eh -0.9 to -1.0 and pH 14 to 15). Experimentally, tartrate was found to enhance the dissolution rate of aluminum in highly caustic solutions. The addition of ferric chloride to the immersion bath produced coatings that were more crystalline, and also decreased the amount of hydrogen gas evolved in the second immersion step. The deposition of zinc and iron during the second immersion step was considerably less than that during the first immersion step. The second immersion coating became more adherent as the initial surface roughness decreased, and as grain size was increased the second immersion coating became thicker. For increasing grain size the micrographs for the first and second immersion coatings showed that the coatings became more localized. The second immersion coating thickness and morphology were also dependent upon several first immersion variables, such as bath temperature, immersion time and bath composition. Increased dissolution rates of aluminum in the first immersion produced thinner coatings with a finer crystallite growth. Increased bath temperature and increased first immersion time enhanced the dissolution rate of aluminum. The zinc coating slowed the dissolution rate of aluminum. When zinc was absent from the first immersion bath, the aluminum dissolution was much faster and resulted in thinner coatings upon subsequent second immersion. The molar ratio of zinc deposited to aluminum dissolved was a constant value of 1.1 for both first and second immersions; the molar ratio was also constant for the different aluminum substrates examined in this investigation.
99

Classification of galvanneal steel using optical texture analysis

Woodham, Scott Lee January 2000 (has links)
No description available.
100

A fundamental study of the formation of cubic-nitride films using ion-assisted deposition and graded Ti-B-N interlayers

Kobayashi, Toshiro January 1998 (has links)
No description available.

Page generated in 0.0742 seconds