• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 8
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimized upper bound analysis of polymer coated metal rod extrusion through conical die

Shah, Ritesh Lalit 17 September 2007 (has links)
Extrusion is a metal forming process used extensively in industry to produce different structural, mechanical, electrical, architectural, automotive and aerospace application parts. Currently after extrusion, the rod is subjected to environmental wear due to long storage time and hence requires an additional cleaning process before further use. This cleaning process can be eliminated by extruding a polymer coated metal rod workpiece such that the polymer coating is sustained on the final product after the extrusion process. In the present research study a new upper bound analytical model is developed to predict the forces required to conduct extrusion of a polymer coated metal rod successfully. The search for the lower upper bound power functional is modeled as a non linear optimization problem. Optimizing the functional also determines the set of constraints defining the shape of rigid plastic deformation boundaries and the final coating thickness. Also an upper bound analytical model was developed to predict forces for failure of the polymer coating during the extrusion. Both the analytical models for successful and failed extrusion are compared to obtain critical die angle which can provide tooling and process design guidelines. Finite element analysis simulations were modeled using commercially available software package, ABAQUS. Predictions of FEA simulations were in good agreement with published results and with the predictions of analytical model developed in this study.
2

Assessing Diphenyl Polyenes as PH Sensitive Colorimetric Probes of Proton Gradients in Polymer Coatings

Shesham, Vaishnavi 18 May 2021 (has links)
No description available.
3

Mechanical and thermal properties of lightweight concrete produced with polyester-coated pumice aggregate

Bideci, A., Bideci, O.S., Ashour, Ashraf 17 June 2023 (has links)
Yes / With the technological advances in the field of building materials, there has been an increasing focus on the research of lightweight concrete made with coated aggregates for improving the durability of concrete. In this study, pumice aggregates were coated with cast-based polyester to obtain polymer-coated pumice aggregates (PCPA). Lightweight concretes were produced with different cement dosages (200, 250 and 300) and PCPAs at different ratios (0%, 50% and 100%). Physical properties, mechanical strength, thermal properties and internal structure analysis (SEM-EDS) of the produced concrete samples were performed. According to the RILEM functional classification of lightweight concrete, the test results showed that REF D300 and REF D250 dosage series are in the semi-load-bearing lightweight concrete class, and the other all series are in the insulation concrete class, and the produced concretes can be classified as lightweight insulation materials. It can also be used in non-load-bearing walls or as an alternative lightweight insulation material. / The first author wish to thank the support of Scientific and Technical Research Council (TUBITAK) BIDEB-2219 Postdoctoral Research (Project Number: 1059B192100644) and the second author also thank to the Düzce University. / The full-text of this article will be released for public view at the end of the publisher embargo on 20 June 2024.
4

The Transport and Fate of Metal and Metal Oxides Nanoparticles under Different Environmental Conditions

Li, Zhen 05 June 2015 (has links)
No description available.
5

Fertilizantes nitrogenados de liberação gradual: longevidade e volatilização em ambiente controlado / Gradual release of nitrogen fertilizers: longevity and volatilization under controlled environment

Mota, Edson Pereira da 12 November 2012 (has links)
O aumento populacional verificado em escala mundial remete a necessidade do aumento da produção de alimentos, fibras e energia e, neste cenário, a prática da adubação como aporte de nutrientes ao solo ganha destaque para atender essas necessidades. Nesse contexto, a adubação nitrogenada, por fornecer nitrogênio, elemento fundamental ao desenvolvimento das plantas e à manutenção e aumento da produtividade, destaca-se com o uso da ureia. A ureia é o principal fertilizante sólido em âmbito mundial, ocupando metade da matriz dos nitrogenados tanto no Brasil como no mundo, possui alta concentração de N e preço mais atrativo por unidade do nutriente, porém esta sujeita a perdas, das quais a volatilização de amônia é o principal fator da baixa eficiência nas adubações. Como alternativa a minimização dessas perdas, tem-se hoje o desenvolvimento de produtos denominados fertilizantes de eficiência aumentada. Dentre esses, uma opção é o recobrimento da ureia com polímeros, resultando em proteção física do insumo. O objetivo foi estudar a dinâmica de fertilizante nitrogenado de liberação gradual avaliando a longevidade e suas perdas por volatilização de amônia. O experimento foi conduzido no município de Batatais- SP, de Novembro de 2011 a Fevereiro de 2012, utilizando Latossolo Vermelho-Amarelo. Foram utilizados 5 tratamentos de ureia recoberta com diferentes porcentagens de resina de poliuretano, mais um tratamento de ureia sem recobrimento para fins de comparação. As porcentagens de recobrimento utilizadas correspondem ao número de dias esperado para a liberação do nutriente sendo: 3,70% (30 dias), 4,55% (60 dias), 5,40% (90 dias), 7,10% (150 dias) e 8,80% (250 dias). Experimentos semelhantes foram instalados em condições laboratoriais de ambiente controlado (25 ± 2°C), e em casa de vegetação, simulando condições de aplicação em superfície e enterrada. Para o experimento de volatilização, foi utilizado o sistema fechado dinâmico, capturando a amônia volatilizada em coletores contendo solução ácida e, esta solução foi analisada em sistema FIA determinando a quantidade de N perdida. Em relação ao experimento de longevidade, foi desenvolvido sistema de análise destrutiva, colocando os tratamentos em sachês porosos e alocando-os em superfície e enterrados a 5 cm no solo. Para ambos os experimentos foram realizadas coletas periódicas, analisando as amostras e traçando gráficos relativos à volatilização da amônia, a faixas de liberação e potencial de longevidade dos tratamentos. O recobrimento da ureia com polímero de poliuretano apresentou redução na volatilização com porcentagens acima de 7%, além de causar atraso nos picos de volatilização. Quanto à longevidade, o recobrimento do fertilizante resultou em liberação gradual do nutriente com dinâmica exponencial, podendo ser traçadas faixas de liberação e potenciais de longevidade dos tratamentos. A aplicação superficial dos tratamentos obteve melhores resultados de liberação/longevidade. Os fatores temperatura e umidade interferem diretamente na volatilização da amônia, na velocidade de liberação e na longevidade dos fertilizantes recobertos com poliuretano. Pesquisas envolvendo este tipo de tecnologia são necessárias, pois além do estabelecimento de metodologias padrão, aplicáveis a estes produtos ou grupos dos mesmos, em rotinas de laboratório, pode-se obter melhor caracterização, entendimento e classificação desses novos materiais. / The worldwide population increase leads to necessity to increase food, fiber and energy production and, under this scenario, fertilizer applications like supply of nutrients to the soil, is highlighted to meet those needs. In this context, nitrogen fertilization, to provide nitrogen, essential element for plant development and maintenance and increased productivity, stands out with the urea use. Urea is the main solid fertilizer worldwide, occupying half of the matrix of nitrogen both in Brazil and in the world, has a high concentration of N and an attractive price per unit of nutrient, but is subject to losses, which the volatilization ammonia is the main factor in the low efficiency of fertilization. As alternative to minimize these losses, currently we have the development of products denominated increased efficiency fertilizer, which focus on urea coatings using polymers resulting in physical protection of the material. The objective was to study the dynamics of nitrogen fertilizer gradual release bu means of evaluating their longevity and losses by volatilization. The experiment was conducted in the municipality of Batatais-SP, extending from November 2011 to February 2012, using a Oxisol. Five treatments of coated urea with different percentages of a polyurethane resin were used, aswell a urea treatment without coating for comparison purposes was used too, the percentages used remitted expected number of days for the release of the nutrient was: 3.70% (30 days) 4.55% (60 days) 5.40% (90 days) 7.10% (150 days) and 8.80% (250 days). Similar experiments were assembled in a controlled environment (25 ± 2 ° C) and under greenhouse conditions simulating application in surface and buried. For the volatilization experiment, we used the closed system dynamic, capturing the volatilized ammonia in collectors containing acidic solution, and this solution was analyzed in FIA system in order to determine the amount of N lost. In relation to the longevity experiment, a destructive analysis system was used, placing the treatments in porous sachets and placing them on the surface and buried 5 cm into the soil. For both experiments samples were collected and analyzed periodically allowing plotting graphs for ammonia volatilization, release bands and potential longevity of the treatments. The urea coating with polyurethane polymer decreased the volatilization with percentages above 7%, besides causing a delay in the peak of volatilization. As for longevity, the fertilizer coating resulted in a gradual release of the nutrient presenting a release dynamic exponential and can be traced release bands and potential longevity treatments. Surface application of the treatments resulted in better results of release / longevity. The factors temperature and humidity affects directly ammonia volatilization, speed and longevity of release fertilizer coated with polyurethane. Additional research in this field is required, in addition to establishing standard methodologies to be used in routine laboratory in order to obtain a better characterization, classification and understanding of these new materials.
6

Fertilizantes nitrogenados de liberação gradual: longevidade e volatilização em ambiente controlado / Gradual release of nitrogen fertilizers: longevity and volatilization under controlled environment

Edson Pereira da Mota 12 November 2012 (has links)
O aumento populacional verificado em escala mundial remete a necessidade do aumento da produção de alimentos, fibras e energia e, neste cenário, a prática da adubação como aporte de nutrientes ao solo ganha destaque para atender essas necessidades. Nesse contexto, a adubação nitrogenada, por fornecer nitrogênio, elemento fundamental ao desenvolvimento das plantas e à manutenção e aumento da produtividade, destaca-se com o uso da ureia. A ureia é o principal fertilizante sólido em âmbito mundial, ocupando metade da matriz dos nitrogenados tanto no Brasil como no mundo, possui alta concentração de N e preço mais atrativo por unidade do nutriente, porém esta sujeita a perdas, das quais a volatilização de amônia é o principal fator da baixa eficiência nas adubações. Como alternativa a minimização dessas perdas, tem-se hoje o desenvolvimento de produtos denominados fertilizantes de eficiência aumentada. Dentre esses, uma opção é o recobrimento da ureia com polímeros, resultando em proteção física do insumo. O objetivo foi estudar a dinâmica de fertilizante nitrogenado de liberação gradual avaliando a longevidade e suas perdas por volatilização de amônia. O experimento foi conduzido no município de Batatais- SP, de Novembro de 2011 a Fevereiro de 2012, utilizando Latossolo Vermelho-Amarelo. Foram utilizados 5 tratamentos de ureia recoberta com diferentes porcentagens de resina de poliuretano, mais um tratamento de ureia sem recobrimento para fins de comparação. As porcentagens de recobrimento utilizadas correspondem ao número de dias esperado para a liberação do nutriente sendo: 3,70% (30 dias), 4,55% (60 dias), 5,40% (90 dias), 7,10% (150 dias) e 8,80% (250 dias). Experimentos semelhantes foram instalados em condições laboratoriais de ambiente controlado (25 ± 2°C), e em casa de vegetação, simulando condições de aplicação em superfície e enterrada. Para o experimento de volatilização, foi utilizado o sistema fechado dinâmico, capturando a amônia volatilizada em coletores contendo solução ácida e, esta solução foi analisada em sistema FIA determinando a quantidade de N perdida. Em relação ao experimento de longevidade, foi desenvolvido sistema de análise destrutiva, colocando os tratamentos em sachês porosos e alocando-os em superfície e enterrados a 5 cm no solo. Para ambos os experimentos foram realizadas coletas periódicas, analisando as amostras e traçando gráficos relativos à volatilização da amônia, a faixas de liberação e potencial de longevidade dos tratamentos. O recobrimento da ureia com polímero de poliuretano apresentou redução na volatilização com porcentagens acima de 7%, além de causar atraso nos picos de volatilização. Quanto à longevidade, o recobrimento do fertilizante resultou em liberação gradual do nutriente com dinâmica exponencial, podendo ser traçadas faixas de liberação e potenciais de longevidade dos tratamentos. A aplicação superficial dos tratamentos obteve melhores resultados de liberação/longevidade. Os fatores temperatura e umidade interferem diretamente na volatilização da amônia, na velocidade de liberação e na longevidade dos fertilizantes recobertos com poliuretano. Pesquisas envolvendo este tipo de tecnologia são necessárias, pois além do estabelecimento de metodologias padrão, aplicáveis a estes produtos ou grupos dos mesmos, em rotinas de laboratório, pode-se obter melhor caracterização, entendimento e classificação desses novos materiais. / The worldwide population increase leads to necessity to increase food, fiber and energy production and, under this scenario, fertilizer applications like supply of nutrients to the soil, is highlighted to meet those needs. In this context, nitrogen fertilization, to provide nitrogen, essential element for plant development and maintenance and increased productivity, stands out with the urea use. Urea is the main solid fertilizer worldwide, occupying half of the matrix of nitrogen both in Brazil and in the world, has a high concentration of N and an attractive price per unit of nutrient, but is subject to losses, which the volatilization ammonia is the main factor in the low efficiency of fertilization. As alternative to minimize these losses, currently we have the development of products denominated increased efficiency fertilizer, which focus on urea coatings using polymers resulting in physical protection of the material. The objective was to study the dynamics of nitrogen fertilizer gradual release bu means of evaluating their longevity and losses by volatilization. The experiment was conducted in the municipality of Batatais-SP, extending from November 2011 to February 2012, using a Oxisol. Five treatments of coated urea with different percentages of a polyurethane resin were used, aswell a urea treatment without coating for comparison purposes was used too, the percentages used remitted expected number of days for the release of the nutrient was: 3.70% (30 days) 4.55% (60 days) 5.40% (90 days) 7.10% (150 days) and 8.80% (250 days). Similar experiments were assembled in a controlled environment (25 ± 2 ° C) and under greenhouse conditions simulating application in surface and buried. For the volatilization experiment, we used the closed system dynamic, capturing the volatilized ammonia in collectors containing acidic solution, and this solution was analyzed in FIA system in order to determine the amount of N lost. In relation to the longevity experiment, a destructive analysis system was used, placing the treatments in porous sachets and placing them on the surface and buried 5 cm into the soil. For both experiments samples were collected and analyzed periodically allowing plotting graphs for ammonia volatilization, release bands and potential longevity of the treatments. The urea coating with polyurethane polymer decreased the volatilization with percentages above 7%, besides causing a delay in the peak of volatilization. As for longevity, the fertilizer coating resulted in a gradual release of the nutrient presenting a release dynamic exponential and can be traced release bands and potential longevity treatments. Surface application of the treatments resulted in better results of release / longevity. The factors temperature and humidity affects directly ammonia volatilization, speed and longevity of release fertilizer coated with polyurethane. Additional research in this field is required, in addition to establishing standard methodologies to be used in routine laboratory in order to obtain a better characterization, classification and understanding of these new materials.
7

Deposition of Nano-scale Particles in Aqueous Environments --Influence of Particle Size, Surface Coating, and Aggregation State

Lin, Shihong January 2012 (has links)
<p>This work considers the transport and attachment of nanoscale particles to surfaces and the associated phenomena that dictate particle-surface interactions. A consideration of the deposition of nano-scale particles on surfaces is a natural outgrowth of more than a century of research in the area of colloid science, and has taken on new pertinence in the context of understanding the fate and transport of engineered nanoparticles in aqueous environments. More specifically, the goal of this work is to better understand the effects of particle size, surface polymer coatings, and aggregation state on the kinetics of nanoparticle deposition. Theoretical tools such as those developed by Derjaguin-Landau-Verwey-Overbeek (DLVO) and Flory-Krigbaum , as well as the soft particle theory and surface element integration scaling methods are employed to address certain problems that were not considered with the existing theoretical frameworks for the conventional colloidal problems. Consequences of theoretical predictions are evaluated experimentally using column experiments or the quartz crystal microbalance techniques to monitor deposition kinetics. One of the key findings of this work is the observation that polymer coatings may stabilize nanoparticles against deposition or increase deposition, depending on whether the polymer coatings exist on both of the interacting surfaces and the interaction between the polymer and the collector surface. Both steric and bridging mechanisms are possible depending on whether contact between the polymer and collector surface can result in successful attachment. In addition, limitations in the use of conventional, equilibrium-based DLVO theory to describe the deposition of nano-scale particles at very low ionic strength are also identified and discussed. Moreover, it is demonstrated that the interaction between the aggregated nano-scale particles and environmental surfaces is controlled by the characteristic size of the primary particles rather than that of the aggregates. Thus despite an increase in hydrodynamic diameter, aggregation is predicted to reduce deposition only from the hydrodynamic aspects, but not from the colloidal interaction aspect. The affinity between aggregated nanoparticles and a surface may be increased at the initial stage of deposition while being unaffected by aggregation state during later stages of deposition. The results of this study lead to better understandings, at least on a qualitative level, of the factors that controlling the kinetics of deposition and, in a broader sense, the fate and transport of nanoscale particles in the aqueous environment.</p> / Dissertation
8

Chemical Application of Silicon-Based Resonant Microsensor

Byun, Albert Joonsoo 31 May 2007 (has links)
The detection of volatile organic compounds in liquid is of interest for applications in public health, workplace safety and environmental monitoring. Traditionally, water samples were taken and analyzed in the laboratory using classical laboratory instrumentation. Current trends target real-time measurements using e.g. chemical microsensors built with microfabrication technologies. Among these, mass-sensitive chemical sensors, based on cantilever beams or surface acoustic devices, have shown substantial promise in gas-phase applications. In a liquid environment, the resonant microstructures typically suffer from high damping, which negatively affects the sensor resolution. In this work, a novel disk-type resonator developed at Georgia Tech was investigated as chemical microsensor for liquid-phase applications. The micromachined resonator vibrates in a rotational in-plane mode shape, reducing damping in a liquid environment. As part of the present research, a measurement setup with a custom-made flow cell for liquid-phase chemical measurements and a coating system to locally deposit polymer sensitive films onto the resonators were developed. To improve the film adhesion on the resonator surface in liquid, physical and chemical binding techniques were developed and tested on wafer samples. Polymers such as poly(4-vinylpyrrolidone), poly(ethylene-co-propylene) and poly(styrene-co-butadiene) were deposited using the custom-designed coating system onto the disk-type resonators. Liquid-phase measurements using tetrachloroethylene as the chemical analyte were performed. The experimental results are discussed, sources of problems are identified and recommendations for future research are made.
9

Experimental Investigation of Encapsulated Phase Change Materials for Thermal Energy Storage

Alam, Tanvir E 01 January 2015 (has links)
Thermal energy storage (TES) is one of the most attractive and cost effective solutions to the intermittent generation systems like solar, wind and other renewable sources, compared to alternatives. It creates a bridge between the power supply and demand during peak hours or at times of emergency to ensure the continuous supply of energy. Among all the TES systems, latent heat thermal energy storage (LHTES) draws lots of interests as it has high energy density and can store or retrieve energy isothermally. Two major technical challenges associated with the LHTES are low thermal conductivity of the phase change materials (PCMs), and corrosion tendency of the containment vessel with the PCMs. Macro-encapsulation of the PCM is one of the techniques to encounter the low thermal conductivity issue as it will maximize the heat transfer area for the given volume of the PCM and restrict the PCMs to get in contact with the containment vessel. However, finding a suitable encapsulation technique that can address the volumetric expansion problem and compatible shell material are significant barriers of this approach. In the present work, an innovative technique to encapsulate PCMs that melt in the 100-350 oC temperature range was developed for industrial and private applications. This technique did not require a sacrificial layer to accommodate the volumetric expansion of the PCMs on melting. The encapsulation consisted of coating a non-reactive polymer over the PCM pellet followed by deposition of a metal layer by a novel non-vacuum metal deposition technique. The fabricated spherical capsules were tested in different heat transfer fluid (HTF) environments like air, oil and molten salt (solar salt). Thermophysical properties of the PCMs were investigated by DSC/TGA, IR and weight change analysis before and after the thermal cycling. Also, the constrained melting and solidification of sodium nitrate PCM inside the spherical capsules of different sizes were compared to explore the charging and discharging time. To accomplish this, three thermocouples were installed vertically inside the capsule at three equidistant positions. Low-density graphene was dispersed in the PCM to increase its conductivity and compared with pure PCM capsules. A laboratory scale packed-bed LHTES system was designed and built to investigate the performance of the capsules. Sodium nitrate (m.p. 306oC) was used as the PCM and air was used as the heat transfer fluid (HTF). The storage system was operated between 286oC and 326oC and the volumetric flow rate of the HTF was varied from 110 m3/h to 151 m3/h. The temperature distribution along the bed (radially and axially) and inside the capsules was monitored continuously during charging and discharging of the system. The effect of the HTF mass flow rate on the charging and discharging time and on the pressure drop across the bed was evaluated. Also, the energy and exergy efficiencies were calculated for three different flow rates. Finally, a step-by-step trial manufacturing process was proposed to produce large number of spherical capsules.
10

Elaboration par plasma froid basse pression de revêtements polymères protecteurs de fibres organiques et inorganiques

Einig, Antinéa 03 October 2013 (has links)
L’allègement des structures combinée a l’augmentation de leurs propriétés mécaniques et électriques est un des axes d’innovation dans le domaine des composites à hautes performances. Certains de ces matériaux emplois des matrices organiques à renforts carbones. Une voie de recherche privilégiée est l’utilisation et l’intégration de nanomatériaux aux composites. Ainsi des nanotubes de carbone sont greffés à la surface des fibres de carbone, créant une fibre hybride. Pendant le processus industriel subi par la fibre, des nanotubes sont susceptibles d’être relâchés et de provoquer la dégradation des propriétés de la fibre. La dimension nanométrique de ces particules les rend plus performant que les matériaux conventionnels mais constitue un risque potentiel pour la santé de l’être humain. Pour conserver les nanotubes sur la fibre, un revêtement polymérique protecteur est ajouté à la fibre hybride. Dans le cadre de cette thèse, ce revêtement est déposé par polymérisation plasma sous vide d’un monomère. Les monomères d’acide acrylique et d’acétylène agissent avec les paramètres de dépôt sur l’interface entre les fibres et la matrice, et donc sur les propriétés mécaniques du composite. L’évolution de cette interface est caractérisée par l’énergie de surface du dépôt sur substrats modèles puis sur fibre hybride. Les revêtements issus des deux monomères assurent la protection des nanotubes, améliorent l’interface entre la fibre et la matrice, tout en conservant le gain de conduction apporte par le greffage des nanotubes. L’addition d’une étape de traitement plasma non polymérisable, avant ou après le dépôt du polymère, peut améliorer les propriétés interfaciales par rapport aux fibres hybrides. / Innovation areas in high performance composite are based on structure lightening combined with mechanical and electrical enhancement. Carbon reinforced organic matrix is widely used for composite applications. Nanomaterial’s incorporation appears among the ways of improvement. In this study, carbon nanotubes are grafted on carbon fibers’ surface to create a hybrid fiber. However, handling hybrid fibers may lead releasing CNT, weakening fiber properties and unwilling health risk. A protective layer is then required for properties saving and for safety purpose. In our work, a coating is deposited by low pressure plasma polymerization of organic monomer: acrylic acid or acetylene. Monomer deposit parameters influence cohesion at the interface between fiber and matrix by means of physical and chemical interactions. We show from results observed at microscal that macro mechanical properties of the final composite are also modified. Coating is characterized by means of surface energy calculation on model substrate. It allows choosing coating properties and plasma treatment conditions to be applied to hybrid fibers. A protective coating is obtained from the two monomers on nanotubes and increases mechanical properties at the fiber/matrix interface. The deposit does not spoil electrical conductivity of hybrid fiber. Addition of pre or post plasma treatment before or after coating may improve in some case mechanical properties of composite within the interface between protected hybrid fiber and matrix compared to uncoated one.

Page generated in 0.0967 seconds