Spelling suggestions: "subject:"fordism""
21 |
Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphesPerrier, Alexandre 12 1900 (has links)
No description available.
|
22 |
Quelques propriétés des sous-variétés lagrangiennes monotones : Rayon de Gromov et morphisme de SeidelCharette, François 08 1900 (has links)
Cette thèse présente quelques propriétés des sous-variétés lagrangiennes monotones. On résoud d'abord une conjecture de Barraud et Cornea dans le cadre monotone en montrant que le rayon de Gromov relatif à deux lagrangiennes dans la même classe d'isotopie hamiltonienne donne une borne inférieure à la distance de Hofer entre ces deux mêmes lagrangiennes. Le cas non-monotone de cette conjecture reste ouvert encore. On définit toutes les structures nécessaires à l'énoncé et à la preuve de cette conjecture.
Deuxièmement, on définit une nouvelle version d'un morphisme de Seidel relatif à l'aide des cobordismes lagrangiens de Biran et Cornea. On montre que cette version est chaîne-homotope aux différentes autres versions apparaissant dans la littérature. Que toutes ces définitions sont équivalentes fait partie du folklore mais n'apparaît pas dans la littérature.
On conclut par une conjecture qui identifie un triangle exact obtenu par chirurgie lagrangienne et un autre dû à Seidel et faisant intervenir le twist de Dehn symplectique. / We present in this thesis a few properties of monotone Lagrangian submanifolds. We first solve a conjecture of Barraud and Cornea in the monotone setting by showing that the relative Gromov radius of two Hamiltonian-isotopic Lagrangians gives a lower bound on the Hofer distance between them. The general non-monotone case remains open to this day. We define all the structures relevant to state and prove the conjecture.
We then define a new version of a Lagrangian Seidel morphism through the recently introduced Lagrangian cobordisms of Biran and Cornea. We show that this new version is chain-homotopic to various other versions appearing in the litterature. That all these previous versions are the same is folklore but did not appear in the litterature.
We conclude with a conjecture claiming that an exact triangle obtained by Lagrangian surgery is isomorphic to an exact triangle of Seidel involving the symplectic Dehn twist.
|
23 |
Cobordismes lagrangiens et uniréglageLétourneau, Vincent 11 1900 (has links)
Ce mémoire traite de la question suivante: est-ce que les cobordismes lagrangiens préservent l'uniréglage? Dans les deux premiers chapitres, on présente en survol la théorie des courbes pseudo-holomorphes nécessaire. On examine d'abord en détail la preuve que les espaces de courbes $ J $-holomorphes simples est une variété de dimension finie. On présente ensuite les résultats nécessaires à la compactification de ces espaces pour arriver à la définition des invariants de Gromov-Witten. Le troisième chapitre traite ensuite de quelques résultats sur la propriété d'uniréglage, ce qu'elle entraine et comment elle peut être démontrée. Le quatrième chapitre est consacré à la définition et la description de l'homologie quantique, en particulier celle des cobordismes lagrangiens, ainsi que sa structure d'anneau et de module qui sont finalement utilisées dans le dernier chapitre pour présenter quelques cas ou la conjecture tient. / In this dissertation we study the following question: do Lagrangian cobordisms preserve uniruling? In the two first chapters, the necessary pseudoholomorphic curves theory is quickly presented. We first study in detail the proof that the spaces of simple $ J $-holomorphic curves is a manifold of finite dimension. We then present the necessary results to produce the appropriate compactification of these spaces to get to the definition of Gromov-Witten invariants. In the third chapter then some results on the property of uniruling are presented: what are its consequences, how can it be obtained. In the fourth chapter quantum homology is defined, in particular for Lagrangian cobordism, and its ring and module structures are studied which are finally used in the last chapter to present examples of cobordisms which preserves uniruling.
|
Page generated in 0.0723 seconds