• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 7
  • 4
  • 1
  • Tagged with
  • 39
  • 39
  • 14
  • 8
  • 7
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Interaction of dissolved and colloidal substances with fines of mechanical pulp - influence on sheet properties and basic aspects of adhesion

Rundlöf, Mats January 2002 (has links)
No description available.
12

Interaction Between Microgels and Oppositely Charged Proteins

Johansson, Christian January 2009 (has links)
This thesis reports on interactions between microgels and oppositely charged proteins. Two types of negatively charged microgels are investigated: poly(acrylic acid) microgels of 60-80 µm in diameter, and colloidal poly(NIPAM-co-acrylic acid) microgels of around 1 µm in diameter. The proteins used are lysozyme and cytochrome c, which both have positive net charge. The experimental techniques used in the studies of the larger microgels are mainly micromanipulator-assisted microscopy and confocal microscopy, while the smaller microgels are studied mainly with dynamic light scattering. It is observed that large amounts of protein are absorbed by the microgels, and that the uptake involves a substantial deswelling of the microgel. The uptake generally decreases as the ionic strength is increased, which is characteristic of electrostatic interactions. An ionic strength optimum is however observed in the case of lysozyme and poly(acrylic acid) microgels, where the highest uptake (10 gram lysozyme / gram microgel) is observed at ionic strength 40 mM. Cytochrome c uptake in poly(acrylic acid) microgels results in homogenous cytochrome c distribution throughout the microgel, whereas lysozyme uptake results in core-shell formation; the lysozyme concentration becomes much higher in the shell (outer part of the microgel) than in the core (inner part of the microgel). The shell constitutes a stress-bearing network which is sufficiently porous to allow protein diffusion through the shell. The different protein distributions are associated with different protein-protein interactions; strong protein-protein attraction promotes shell formation. In the case of colloidal microgels, lysozyme uptake decreases the electrophoretic mobility and the colloidal stability of the microgels. The microgels flocculate as the uptake reaches charge ratio 0.6-0.7 (positive lysozyme charges/negative microgel charges), largely independent of ionic strength. Initial experiments on the combination of cytochrome c and colloidal microgels show that colloidal stability is maintained at a range of conditions (ionic strength, protein concentration) where flocculation occurred in the case of lysozyme.
13

Interaction of dissolved and colloidal substances with fines of mechanical pulp - influence on sheet properties and basic aspects of adhesion

Rundlöf, Mats January 2002 (has links)
No description available.
14

A study of the colloidal stability of mixed abrasive slurries of silica and ceria nanoparticles for chemical mechanical polishing

Lin, Fangjian Unknown Date
No description available.
15

Nanoparticules organiques ultra-brillantes pour l'imagerie biologique / Ultra-bright organic nanoparticles for biologic imaging

Bsaibess, Talia 28 April 2015 (has links)
Les nanoparticules inorganiques luminescentes ont suscité un intérêt croissant au cours des dernières décennies, notamment pour leur application en imagerie biologique. Un certain nombre d’entre elles présentent toutefois des limitations telles que toxicité, absence de biodégradabilité, faible brillance, clignotements…. Dans cette optique, les nanoparticules fluorescentes à base de petites molécules organiques (FONs) offrent une solution alternative prometteuse aux nanoparticules inorganiques pour l'imagerie biologique. Le principal défi réside dans l'élaboration des nanoparticules organiques possédant une brillance élevée, une bonne stabilité dans l'eau (y compris en milieu biologique), une bonne biocompatibilité ainsi qu'une émission accordable dans le visible et au-delà dans le proche infrarouge (pour une détection plus aisée en milieu diffusant). Dans cette optique, nous avons utilisé une stratégie basée sur l’utilisation de chromophores dipolaires de type "push pull" « adaptés ». Au cours du travail, la synthèse de séries de chromophores homologues bâtis sur le même système conjugué et ayant en commun un groupe donneur de type triphénylamine (destiné à préserver les propriétés de luminescence) présentant ou non des motifs encombrants positionnés a été réalisée. Les nanoparticules correspondantes ont été préparées selon un protocole classique, simple et rapide à mettre en oeuvre (précipitation). L’étude des propriétés photophysiques des nanoparticules organiques fluorescentes ainsi obtenues a été réalisée et mise en perspective avec celles des chromophores en solution dans des solvants organiques de polarité variable. Une étude systématique de l’évolution dans le temps des propriétés optiques des nanoparticules organiques a été réalisée permettant de mettre en lumière des relations entre la structure des sous-unités chromophoriques et la stabilité colloïdale et « optique » des nanoparticules. Ces études ont permis d’identifier des nanoparticules émettant dans le proche infrarouge extrêmement brillantes et présentant une stabilité colloïdale remarquable dans l’eau, une photostabilité accrue et une très bonne biocompatibilité. De ce fait, ces nanoparticules ont pu être utilisées avec succès dans l'imagerie biologique des cellules et le suivi (tracking) à l'échelle de la particule unique, démontrant l'intérêt de la démarche d'ingénierie mise en oeuvre. / During the last decades, luminescent inorganic nanoparticles have attracted a large interest in different fields including biological imaging. However, a number of them have drawbacks such as toxicity and absence of biodegradability. Recently, molecular-based fluorescent organic nanoparticles (FONs) have emerged as a promising alternative to inorganic nanoparticles for bioimaging. The main challenge lies in the elaboration of organic nanoparticles that combine large brightness, good colloidal stability in biological environments) and biocompatibility as well as NIR emission (to allow improved detection in thick tissues). To achieve this objective, we have implemented a molecular engineering strategy based on dedicated polar and polarizable "push pull" chromophore built from a triphenylamine donor moiety and a specific pi-conjugated system. The corresponding nanoparticles were readily prepared by the reprecipitation method. In the present manuscript, the synthesis of the chromophores and the preparation and characterization of the organic fluorescent nanoparticles is described. A comprehensive investigation of their photophysical properties and study of their colloidal stability is presented allowing to derive structure-property relationships. The implemented study led to innovative NIR-emitting nanoparticles combining large brightness (superior to those of QDs and NIR-emitting organic dyes), remarkable colloid stability and suitable photostability. These nanoparticles have been successfully used for single particle tracking and imaging in cells, while no toxic effect was observed.
16

Estudo de estabilidade coloidal de sistemas de nanopartículas magnéticas recobertas visando aplicação em biomedicina / Colloidal stability study of magnetic nanoparticles systems covered for application in biomedicine

Mônica Freitas da Silva 20 October 2017 (has links)
Nanoparticulas magnéticas (NPMs) de óxido de ferro tem sido amplamente utilizadas em diversas áreas da biotecnologia e biomedicina, tais como no tratamento de câncer, na entrega controlada de fármacos e como agentes de contraste em imagem por ressonância magnética. O intuito deste trabalho foi sintetizar nanopartículas magnéticas com magnetização de saturação intensificadas via processo do poliol modificado e modificar sua superfície afim de promover a biocompatibilização dos sistemas. Além da funcionalização de nanopartículas previamente biocompatibilizadas utilizando dois métodos: via ligação amida com moléculas de ácido fólico (AF) e com a encapsulação das nanopartículas com quitosana. A modificação de superfície deu-se via procedimentos de lavagem de superfícies, adição e/ou troca de ligantes utilizando moléculas de ácido ?- aminocapróico (EACA), aminopropiltrimetoxisilano (APTMS) e ácido dimercaptosuccínico (DMSA). Através da microscopia eletrônica de transmissão (TEM), foi obtido que as nanopartículas magnéticas de magnetita obtiveram um diâmetro médio de 8 nm, em uma estreita distribuição de tamanho. A difração de raios-X (DRX) indicou a formação de magnetita em todos os sistemas em que o método do poliol modificado foi utilizado. As medidas de espectroscopia vibracional na região do infravermelho (FTIR) evidenciaram a presença de modos de vibração relacionados às macromoléculas e compostos inorgânicos utilizados na modificação de superfície das nanopartículas magnéticas e/ou funcionalização. A TEM das diferentes modificações de superfície mostram a formação de aglomerados dependendo da molécula utilizada. Os estudos de estabilidade coloidal foram necessários para que o meio biológico fosse simulado para uma possível aplicação destes sistemas como carreadores para tratamento via magnetohipertermia ou entrega controlada de NPMs para tratamento de câncer. A nanopartícula recoberta com DMSA apresentou melhores resultados de estabilidade coloidal. Com os sistemas funcionalizados com ácido fólico, o procedimento via ligação com carbodiimida na presença de NHS demonstrou ser eficaz na formação de ligação amida, confirmada por FTIR e quantificação de ligantes. A funcionalização com quitosana necessita de alguns ajustes, visto ser um novo procedimento, porém alguns sistemas em que foi utilizado o método da gelificação iônica possuíram bons resultados de nanocápsulas de quitosana formadas com nanopartículas biocompatibilizadas em seu interior. / Magnetite, iron oxide, is a type of magnetic nanoparticles (NPMs) that is a widely adopted in several areas of biotechnology and biomedicine, such as in the treatment of cancer, controlled delivery of drugs and as contrast agents in magnetic resonance imaging. The purpose of this work is to synthesize magnetic nanoparticles with enhanced saturation magnetization via modified polyol process and modify its surface to promote a biocompatibilization in these systems. In addition, there was the aim to functionalize nanoparticles with modificate surfaces, using two methods: via amide bonding with folic acid molecules (AF) and encapsulation of nanoparticles with chitosan. Surface modification was done via surface washing, addition and / or exchange ligands using ?-aminocaproic acid (EACA), aminopropyltrimethoxysilane (APTMS) and dimercaptosuccinic acid (DMSA) molecules. By transmission electron microscopy (TEM), it was obtained that the magnetite nanoparticles had an average diameter of 8 nm, in a narrow size distribution. X-ray diffraction (XRD) indicated formation of magnetite in all systems where modified polyol method was used. Infrared spectroscopy (FTIR) showed the presence of vibration modes related to macromolecules and inorganic compounds used in the surface modification of magnetic nanoparticles and / or functionalization. The TEM of different surface modifications showed the formation of agglomerates, depending on the molecule used. Colloidal stability studies were necessary to simulate a biological medium for a possible application of these systems as carriers for treatment via magnetohyperthermia or controlled delivery of NPMs for cancer treatment. Nanoparticles coated with DMSA showed better colloidal stability results. With folic acid functionalized systems, the procedure via carbodiimide linkage in the presence of NHS had been shown to be effective in FTIR-confirmed amide bond formation and ligand quantification. The functionalization with chitosan requires some adjustments, since it was a new procedure, however some systems using the ionic gelation method had good results of chitosan nanocapsules formed with biocompatibilized nanoparticles in structure.
17

Nanomateriais luminomagnéticos visando aplicações biológicas: síntese, propriedades, funcionalização e estabilidade coloidal / LUMINOMAGNETIC NANOMATERIALS FOR BIOLOGICAL APPLICATIONS: SYNTHESIS, PROPERTIES, FUNCTIONALIZATION AND COLLOIDAL STABILITY

Caio Guilherme Secco de Souza 10 April 2015 (has links)
Neste trabalho, foi realizado um estudo da obtenção de nanomateriais luminomagnéticos visando potenciais aplicações biológicas, a partir de dois diferentes tipos de estruturas, sendo elas: a formação de heteronanoestruturas luminomagnéticas de NPM de FePt/Fe3O4-CdSe recobertas com sílica; e a formação de nanomateriais luminomagnéticos por ligação covalente entre NPM de FePt/Fe3O4-Dopa-PIMA-PEG-NH2 e pontos quânticos de CdSe/ZnS-LA-PEG-COOH. Para o primeiro tipo de nanomaterial citado, foram testadas duas metodologias para obtenção das heteronanoestruturas: a mudança da estabilidade coloidal pela adição de pequenas quantidades de NaCl no meio contendo as NPM e os pontos quânticos previamente sintetizados; e o método de injeção a quente do precursor de selênio em um meio contendo as NPM como sementes, o precursor de cádmio e os agentes de superfície. O método de injeção a quente foi o que apresentou melhores condições para a formação das heteronanoestruturas. Para providenciar estabilidade coloidal em meio aquoso e superfície com biocompatibilidade, foi realizado o recobrimento com sílica na superfície das heteronanoestruturas luminomagnéticas com melhores condições. Para essa amostra, o tamanho médio obtido foi de 25,0 nm, com polidispersividade de 8,4 %, Ms = 11,1 emu.g-1 e comportamento superparamagnético, além de duas bandas de emissão (com excitação de 400 nm) centradas em 452 nm e 472 nm, respectivamente. Já para o segundo tipo de nanomaterial obtido neste trabalho, foram primeiramente obtidas NPM de FePt/Fe3O4 pelo método do poliol modificado acoplado à metodologia do crescimento, e pontos quânticos luminescentes de CdSe/ZnS pelo método de decomposição térmica de precursores organometálicos, sendo que ambas nanoestruturas apresentaram superfície hidrofóbica. Para a troca de ligantes para transferência das nanoestruturas para a fase aquosa e para providenciar biocompatibilidade visando aplicações biológicas, foram previamente preparados ligantes poliméricos de Dopa-PIMA-PEG-NH2 para recobrimento das NPM e de LA-PEG-COOH para recobrimento dos pontos quânticos. A conjugação química entre as nanoestruturas de FePt/Fe3O4-Dopa-PIMA-PEG-NH2 e CdSe/ZnS-LA-PEG-COOH foi realizada pelo método da carbodiimida em solução aquosa para a formação de uma ligação covalente amida entre os grupos amina e carboxilato em cada uma das nanoestruturas. Os nanomateriais luminomagnéticos obtidos apresentaram estabilidade coloidal em meio aquoso, com estreita distribuição de tamanho, apresentando RH de 79,96 nm, Ms de, aproximadamente, 10 emu.g-1 com coercividade e remanência quase nulos e intensa banda de emissão centrada em 580 nm. Espera-se que os nanomateriais obtidos neste trabalho possam ser promissores nanomateriais com propriedades multifuncionais para potenciais aplicações biológicas. / Here, luminomagnetic nanomaterials were obtained for potential biological applications. We have studied two different types of luminomagnetic nanomaterials, which are: formation of silica-coated FePt/Fe3O4-CdSe heteronanostructures; and formation of luminomagnetic nanomaterials from covalent bond between FePt/Fe3O4-Dopa-PIMA-PEG-NH2 magnetic nanoparticles and CdSe/ZnS-LA-PEG-COOH luminescent quantum dots. For the first type of luminomagnetic nanomaterials obtained, two methodologies were studied for formation of heteronanostructures, which are: modification of colloidal stability by addition of small amounts of NaCl into a solution with hydrophobic magnetic nanoparticles and luminescent quantum dots; and hot injection method of selenium precursor into a solution with magnetic nanoparticles seeds, cadmium precursors and surface agents. The hot injection method obtained better results than the other method studied for formation of heteronanostructures. To provide colloidal stability in aqueous solution and biocompatibility, the heteronanostructures were coated using silica shell. After silica coating, the heteronanostructures showed average diameter of 25 nm and polidispersivity of 8.4%, with Ms = 11.1 emu.g-1 and superparamagnetic behavior. Moreover, these nanomaterials showed two emission peaks centered at 452 and 472 nm. For the second type of nanomaterials obtained, FePt/Fe3O4 magnetic nanoparticles were synthesized by modified polyol method coupled to seeded-mediated growth, and CdSe/ZnS luminescent quantum dots were obtained by thermal decomposition of organometallic precursors. For the ligand exchange to transfer the nanostructures from organic media to aqueous solution, were used Dopa-PIMA-PEG-NH2 and LA-PEG-COOH polymers to provide colloidal stability and biocompatibility on magnetic nanoparticle surface and quantum dot surface, respectively. The chemical conjugation between FePt/Fe3O4-Dopa-PIMA-PEG-NH2 and CdSe/ZnS-LA-PEG-COOH nanostructures was obtained by EDC coupling in aqueous solution, which linked amine and carboxylate groups in each nanostructure to provide the formation of amide bond. The luminomagnetic nanomaterials obtained showed colloidal stability in aqueous solution, narrow size distribution, with RH equal to 79.96 nm, MS around 10 emu.g-1 with low coercivity and remanent magnetization, and intense emission peak centered at 580 nm. We expect these luminomagnetic nanomaterials be promisor nanomaterials with multifunctional properties for potential biological applications.
18

Etude de la stabilité colloïdale du latex de caoutchouc naturel / Study of colloidal stabillity of the natural rubber latex

Alousque, Fanny 19 December 2014 (has links)
Cette thèse, menée en collaboration avec Michelin dans le cadre de la fabrication de matériaux composites, porte sur la stabilité colloïdale du latex de caoutchouc naturel (NR). Ce latex est une dispersion colloïdale polydisperse d'un polymère naturel dans un sérum aqueux. Les particules sont stabilisées par une couche complexe de phospholipides et de protéines. Cette dispersion peut être coagulée de façon irréversible par voie physique (sous cisaillement) ou par voie physico-chimique (ajout de cations divalents ou de particules hydrophobes). Dans ce travail, nous avons étudié la coagulation du latex par les cations divalents. Pour cela nous avons utilisé des outils physico-chimiques : diagrammes de stabilité en présence de divers cations, suivi cinétique de l'agrégation des particules et mesures rhéologiques. Ensuite, nous avons sondé la surface de particules de NR, par électrophorèse, en présence de tensioactifs et aussi selon la taille des particules. Pour expliquer la coagulation, nous suggérons que l'augmentation de la force ionique écrante les interactions répulsives et que les cations forment des ponts ioniques entre les particules. Ces ponts les maintiennent au contact et l'irréversibilité du phénomène est assurée par l'adhésion entre les chaines de polymères proches de la surface. L'adsorption des tensioactifs modifie la surface des particules et la coagulation du latex. Une légère différence de charge de surface a été observée entre les particules de NR selon leur taille. Enfin, un phénomène de coagulation similaire a été obtenu avec un latex synthétique, ce qui ouvre la voie à l'exploitation industrielle de ce phénomène de coagulation. / This work, in collaboration with Michelin for the fabrication of composite materials, deals with the colloidal stability of the latex of natural rubber (NR). The NR latex is a polydisperse colloidal dispersion of a bio-polymer in an aqueous serum. The particles are stabilized by a complex layer of phospholipids and proteins. This dispersion can be coagulated by a physical way (under shearing), or by a physical-chemical way (addition of divalent cations or hydrophobic particles). In this thesis, we studied the coagulation of the NR latex by divalent cations with physical-chemical tools (stability diagrams with different cations, aggregation kinetic of particles, rheological measuremments). Then, the surface of NR particles has been characterized by electrophoresis, firstly in the presence surfactants and secondly depending on the particles size. From the results of the first part we suggest that the coagulation with divalent cations is due to a screening effect because of the increase of ionic strength and that divalent cations can bridge the particles together. This allows keeping them in contact. Adhesion between polymer chains near the surface ensures the irrversible cohesion. In a second time, we saw that the adsorption of surfactants changes the particles surface and the coagulation of NR latex with cations. A small difference of surface charge is observed between the biggest and the smallest NR particles. Finally, a similar behavior has been obtained with a synthetic latex in presence of divalent cations. Our results could be used to develop an industrial process based on this coagulation phenomenon.
19

Cellulose nanofibril materials with controlled structure : the influence of colloidal interactions

Fall, Andreas January 2011 (has links)
Nanoparticles are very interesting components. Due to their very large specific surface area they possess properties in between molecules and macroscopic materials. In addition, a material built up of hierarchically assembled nanoparticles could obtain unique properties, not possessed by the nanoparticles themself. A very interesting group of nanoparticles is the cellulose nanofibrils. The fibrils are found in various renewable resources such as wood, bacteria and tunicates. In this work fibrils extracted from wood is studied. In wood the fibrils are the smallest fibrous component with the approximate dimensions; 4 nm in width and length in the micrometer range, providing a high aspect ratio. In addition, they have a crystallinity above 60% and, hence, a high stiffness. These fibrils are hierarchically ordered in the wood fiber to give it its unique combination of flexibility and strength. The properties of the fibrils make them very suitable to be used as reinforcement elements in composites and, due to their ability to closely pack, to make films with excellent gas barrier properties. The key aspect to design materials, efficiently utilizing the properties of the individual fibrils, is to control the arrangement of the fibrils in the final material. In order to do so, the interactions between fibrils have to be well characterized and controlled. In this thesis the interaction between fibrils in aqueous dispersions is studied, where the main interactions are attractive van der Waals forces and repulsive electrostatic forces. The electrostatic forces arise from carboxyl groups at the fibrils surface, which either are due to hemicelluloses at the fibrils surfaces or chemically introduced to the cellulose chain. This force is sensitive to the chemical environment. It decreases if the pH is reduced or if the salt concentration is increased. If it is strongly reduced the system aggregates. In dilute dispersions aggregation causes formation of multiple clusters, whereas in semi-dilute dispersions (above the overlap concentration) a volume filling network, i.e. a gel, is formed. The tendency of aggregation, i.e. the colloidal stability, can be predicted by using the DLVO theory. In this thesis DLVO predictions are compared to aggregation measurements conducted with dynamic light scattering. Good agreement between experiments and the designed theoretical model was found by including specific interactions between added counter-ions and the carboxyl groups of the fibrils in the model. Thus, the surface charge is both reduced by protonation and by specific interactions. This emphasizes a much larger effect of the counter-ions on the stability then generally thought. Hence, this work significantly improves the understanding of the interfibril interactions in aqueous media. As mentioned above, the fibrils can be physically cross-linked to form a gel. The gelation is an instant process, occurring at pH or salt levels causing the interfibril repulsion to decrease close to zero. If a well dispersed stationary dispersion is gelled, the homogenous and random distribution of the fibrils is preserved in the gel. These gels can be used as templates to produce composites by allowing monomers or polymers to enter the network by diffusion. In an effort to mimic processes occurring in the tree, producing materials with fibrils aligned in a preferred direction, the ability to form gels with controlled fibril orientation were studied. Such networks were successfully produced by applying strain to the system prior or past gelation. Orientation prior gelation was obtained by subjecting the dispersion to elongational flow and freezing the orientation by “turning off” the electrostatic repulsion. Orienting the fibrils after gelation was achieved by applying shear strain. Due to the physical nature of the crosslinks, rotation in the fibril-fibril joints can occur, enabling the fibrils to align in the shear direction. This alignment significantly increased the stiffness of the gels in the shear direction. / QC 20111205
20

Amino-Quat-Primer Polymer stabilized Silica-Nanoparticle-Dispersions

Brandt, Miriam 10 November 2015 (has links)
Enhancing the colloidal stability of nanoparticles dispersions, in order to extend the utilization time without any loss of performance, is desired. Prior works have confirmed the electrosteric stabilization of colloidal particles by so-called “amino-quat-primer” polymers, hyperbranched poly(ethylenimine) polymers containing amino groups and quaternized groups. In this work, a systematic investigation on the factors influencing the polymer-particle-interactions was carried out. Hence, aqueous silica-nanoparticle-dispersions were polymer-functionalized; their dispersions stability was studied using turbidity analysis; and the particle surface charge was examined employing electrophoretic measurements. Five key factors influencing the polymer-particle-interaction were defined, including: the polymer-particle-ratio, the degree of polymerization and the degree of functionalization of the polymer, the dispersion pH and the salt concentration. Alternatingly occurring areas of stable, unstable and again stable dispersions with an increasing polymer-particle-ratio occurred due to a charge reversal of bare, negatively charged to polymer-covered, positively charged particles. An additional area of unstable dispersions at very high polymer concentrations was assumed to arise from depletion forces of non-adsorbed free polymer. Stable, positively charged, polymer-covered silica nanoparticles were obtained for optimized conditions regarding the five key factors. After the dispersion stability enhancement, the new amino-functionalized surface could be used for further modifications, e.g. to result in a compatibility with a polymer matrix to fabricate highly functional polymer / inorganic hybrid materials.

Page generated in 0.1184 seconds