• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 35
  • 24
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 243
  • 102
  • 73
  • 64
  • 56
  • 41
  • 38
  • 22
  • 22
  • 20
  • 19
  • 19
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Commutative And Non-commutative Integrable Equations: Lax Pairs, Recursion Operators

Unal, Gonul 01 July 2011 (has links) (PDF)
In this thesis, we investigate the integrability properties of some evolutionary type nonlinear equations in (1+1)-dimensions both with commutative and non-commutative variables. We construct the recursion operators, based on the Lax representation, for such equations. Finally, we question the notion of integrability for a certain one-component non-commutative equation. [We stress that calculations in this thesis are not original.]
62

Simplicial Complexes of Placement Games

Huntemann, Svenja 15 August 2013 (has links)
Placement games are a subclass of combinatorial games which are played on graphs. In this thesis, we demonstrate that placement games could be considered as games played on simplicial complexes. These complexes are constructed using square-free monomials. We define new classes of placement games and the notion of Doppelgänger. To aid in exploring the simplicial complex of a game, we introduce the bipartite flip and develop tools to compare known bounds on simplicial complexes (such as the Kruskal-Katona bounds) with bounds on game complexes.
63

Centra of Quiver Algebras

Gawell, Elin January 2014 (has links)
A partly (anti-)commutative quiver algebra is a quiver algebra bound by an (anti-)commutativity ideal, that is, a quadratic ideal generated by monomials and (anti-)commutativity relations. We give a combinatorial description of the ideals and the associated generator graphs, from which one can quickly determine if the ideal is admissible or not. We describe the center of a partly (anti-)commutative quiveralgebra and state necessary and sufficient conditions for the center to be finitely genteratedas a K-algebra.Examples are provided of partly (anti-)commutative quiver algebras that are Koszul algebras. Necessary and sufficient conditions for finite generation of the Hochschild cohomology ring modulo nilpotent elements for a partly (anti-)commutative Koszul quiver algebra are given.
64

Euclidean Rings

Fecke, Ralph Michael 05 1900 (has links)
The cardinality of the set of units, and of the set of equivalence classes of primes in non-trivial Euclidean domains is discussed with reference to the categories "finite" and "infinite." It is shown that no Euclidean domains exist for which both of these sets are finite. The other three combinations are possible and examples are given. For the more general Euclidean rings, the first combination is possible and examples are likewise given. Prime factorization is also discussed in both Euclidean rings and Euclidean domains. For Euclidean rings, an alternative definition of prime elements in terms of associates is compared and contrasted to the usual definitions.
65

Singularities of noncommutative surfaces

Crawford, Simon Philip January 2018 (has links)
The primary objects of study in this thesis are noncommutative surfaces; that is, noncommutative noetherian domains of GK dimension 2. Frequently these rings will also be singular, in the sense that they have infinite global dimension. Very little is known about singularities of noncommutative rings, particularly those which are not finite over their centre. In this thesis, we are able to give a precise description of the singularities of a few families of examples. In many examples, we lay the foundations of noncommutative singularity theory by giving a precise description of the singularities of the fundamental examples of noncommutative surfaces. We draw comparisons with the fundamental examples of commutative surface singularities, called Kleinian singularities, which arise from the action of a finite subgroup of SL(2; k) acting on a polynomial ring. The main tool we use to study the singularities of noncommutative surfaces is the singularity category, first introduced by Buchweitz in [Buc86]. This takes a (possibly noncommutative) ring R and produces a triangulated category Dsg(R) which provides a measure of "how singular" R is. Roughly speaking, the size of this category reflects how bad the singularity is; in particular, Dsg(R) is trivial if and only if R has finite global dimension. In [CBH98], Crawley-Boevey-Holland introduced a family of noncommutative rings which can be thought of as deformations of the coordinate ring of a Kleinian singularity. We give a precise description of the singularity categories of these deformations, and show that their singularities can be thought of as unions of (commutative) Kleinian singularities. In particular, our results show that deforming a singularity in this setting makes it no worse. Another family of noncommutative surfaces were introduced by Rogalski-Sierra-Stafford in [RSS15b]. The authors showed that these rings share a number of ring-theoretic properties with deformations of type A Kleinian singularities. We apply our techniques to show that the "least singular" example has an A1 singularity, and conjecture that other examples exhibit similar behaviour. In [CKWZ16a], Chan-Kirkman-Walton-Zhang gave a definition for a quantum version of Kleinian singularities. These require the data of a two-dimensional AS regular algebra A and a finite group G acting on A with trivial homological determinant. We extend a number of results in [CBH98] to the setting of quantum Kleinian singularities. More precisely, we show that one can construct deformations of the skew group rings A#G and the invariant rings AG, and then determine some of their ring-theoretic properties. These results allow us to give a precise description of the singularity categories of quantum Kleinian singularities, which often have very different behaviour to their non-quantum analogues.
66

K-theory correspondences and the Fourier-Mukai transform

Hudson, Daniel 02 May 2019 (has links)
The goal of this thesis is to give an introduction to the geometric picture of bivariant K-theory developed by Emerson and Meyer building on the ideas Connes and Skandalis, and then to apply this machinery to give a geometric proof of a result of Emerson. We begin by giving an overview of topological K-theory, necessary for developing bivariant K-theory. Then we discuss Kasparov's analytic bivariant K-theory, and from there develop topological bivariant K-theory. In the final chapter we state and prove the result of Emerson. / Graduate
67

Factorization in polynomial rings with zero divisors

Edmonds, Ranthony A.C. 01 August 2018 (has links)
Factorization theory is concerned with the decomposition of mathematical objects. Such an object could be a polynomial, a number in the set of integers, or more generally an element in a ring. A classic example of a ring is the set of integers. If we take any two integers, for example 2 and 3, we know that $2 \cdot 3=3\cdot 2$, which shows that multiplication is commutative. Thus, the integers are a commutative ring. Also, if we take any two integers, call them $a$ and $b$, and their product $a\cdot b=0$, we know that $a$ or $b$ must be $0$. Any ring that possesses this property is called an integral domain. If there exist two nonzero elements, however, whose product is zero we call such elements zero divisors. This thesis focuses on factorization in commutative rings with zero divisors. In this work we extend the theory of factorization in commutative rings to polynomial rings with zero divisors. For a commutative ring $R$ with identity and its polynomial extension $R[X]$ the following questions are considered: if one of these rings has a certain factorization property, does the other? If not, what conditions must be in place for the answer to be yes? If there are no suitable conditions, are there counterexamples that demonstrate a polynomial ring can possess one factorization property and not another? Examples are given with respect to the properties of atomicity and ACCP. The central result is a comprehensive characterization of when $R[X]$ is a unique factorization ring.
68

Complexité des pavages apériodiques : calculs et interprétations

Julien, Antoine 10 December 2009 (has links) (PDF)
La théorie des pavages apériodiques a connu des développements rapides depuis les années 1980, avec la découvertes d'alliages métalliques cristallisant dans une structure quasi-périodique.Dans cette thèse, on étudie particulièrement deux méthodes de construction de pavages : par coupe et projection, et par substitution. Deux angles d'approche sont développés : l'étude de la fonction de complexité, et l'étude métrique de l'espace de pavages.Dans une première partie, on calcule l'asymptotique de la fonction de complexité pour des pavages coupe et projection, généralisant ainsi des résultats connus en dynamiques symbolique pour la dimension 1. On montre que pour un pavage coupe et projection canonique N sur d sans période, la complexité croît (à des constantes près) comme n à la puissance a, où a est un entier compris entre d et N-d.Ensuite, on se base sur une construction de Pearson et Bellissard qui construisent un triplet spectral sur les ensembles de Cantor ultramétriques. On suit leur construction dans le cas d'ensembles de Cantor auto-similaires. Elle s'applique en particulier aux transversales d'espaces de pavages de substitution.Enfin, on fait le lien entre la distance usuelle sur l'enveloppe d'un pavage et la complexité de ce pavage. Les liens entre complexité et métrique permettent de donner une preuve directe du fait suivant : la complexité des pavages de substitution apériodiques de dimension d croît comme n à la puissance d.La question de liens entre la complexité et la topologie (et pas seulement avec la distance) reste ouverte. Nous apportons cependant des réponses partielles dans cette direction.
69

On the derivation module and apolar algebra of an arrangement of hyperplanes /

Wakefield, Max, January 2006 (has links)
Thesis (Ph. D.)--University of Oregon, 2006. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 83-84). Also available for download via the World Wide Web; free to University of Oregon users.
70

Moduli spaces of zero-dimensional geometric objects

Lundkvist, Christian January 2009 (has links)
The topic of this thesis is the study of moduli spaces of zero-dimensional geometricobjects. The thesis consists of three articles each focusing on a particular moduli space.The first article concerns the Hilbert scheme Hilb(X). This moduli space parametrizesclosed subschemes of a fixed ambient scheme X. It has been known implicitly for sometime that the Hilbert scheme does not behave well when the scheme X is not separated.The article shows that the separation hypothesis is necessary in the sense thatthe component Hilb1(X) of Hilb(X) parametrizing subschemes of dimension zero andlength 1 does not exist if X is not separated.Article number two deals with the Chow scheme Chow 0,n(X) parametrizing zerodimensionaleffective cycles of length n on the given scheme X. There is a relatedconstruction, the Symmetric product Symn(X), defined as the quotient of the n-foldproduct X ×. . .×X of X by the natural action of the symmetric group Sn permutingthe factors. There is a canonical map Symn(X) " Chow0,n(X) that, set-theoretically,maps a tuple (x1, . . . , xn) to the cycle!nk=1 xk. In many cases this canonical map is anisomorphism. We explore in this paper some examples where it is not an isomorphism.This will also lead to some results concerning the question whether the symmetricproduct commutes with base change.The third article is related to the Fulton-MacPherson compactification of the configurationspace of points. Here we begin by considering the configuration space F(X, n)parametrizing n-tuples of distinct ordered points on a smooth scheme X. The schemeF(X, n) has a compactification X[n] which is obtained from the product Xn by a sequenceof blowups. Thus X[n] is itself not defined as a moduli space, but the pointson the boundary of X[n] may be interpreted as geometric objects called stable degenerations.It is then natural to ask if X[n] can be defined as a moduli space of stabledegenerations instead of as a blowup. In the third article we begin work towards ananswer to this question in the case where X = P2. We define a very general modulistack Xpv2 parametrizing projective schemes whose structure sheaf has vanishing secondcohomology. We then use Artin’s criteria to show that this stack is algebraic. Onemay define a stack SDX,n of stable degenerations of X and the goal is then to provealgebraicity of the stack SDX,n by using Xpv2. / QC 20100729

Page generated in 0.0938 seconds