Spelling suggestions: "subject:"compatibility"" "subject:"compactability""
1 |
Modelling the mechanical behaviour of a pharmaceutical tablet using PDEsAhmat, Norhayati, Ugail, Hassan, Gonzalez Castro, Gabriela 01 1900 (has links)
Yes / Detailed design of pharmaceutical tablets is essential nowadays in order to produce robust tablets with tailor-made properties. Compressibility and compactibility are the main compaction properties involved in the design and development of solid dosage forms. The data obtained from measured forces and displacements of the punch are normally analysed using the Heckel model to assess the mechanical behaviour of pharmaceutical powders. In this paper, we present a technique for shape modelling of pharmaceutical tablets based on the PDE method. We extended the formulation of the PDE method to a higher dimensional space in order to generate a solid tablet and a cuboid mesh is created to represent the tablet’s components. We also modelled the displacement components of a compressed PDE-based representation of a tablet by utilising the solution of the axisymmetric boundary value problem for a finite cylinder subject to a uniform axial load. The experimental data and the results obtained from the developed model are shown in Heckel plots and a good agreement is found between both. / Available in full text since 5th Feb 2013 following the publisher's embargo period.
|
2 |
Improved high velocity cold copaction processing : polymer powder to high performance partsAzhdar, Bruska January 2005 (has links)
<p>A uniaxial High-Velocity Compaction (HVC) process for polymer powder using a cylindrical, hardened steel die and a new technique with relaxation assist was tested with a focus on the compactibility characteristics and surface morphology of the compacted materials using various heights of relaxation assist device with different compacting profiles.</p><p>Relaxation assist device was presented as a new technique to reduce springback, pull-out phenomenon and to improve the compaction process.</p><p>The basic phenomena associated with HVC are explained and the general energy principle is introduced to explain pull-out phenomenon during the decompacting stage. In this study, polyamide-11 powders with different particle size distributions have been compacted with the application of different compaction profiles, e.g. different energies and velocities. It was found that the relative green density is influenced more by the pre-compacting (primary compaction step) than by the post-compacting (secondary compaction step).</p><p>Experimental results for different compaction profiles were presented showing the effect of varying the opposite velocity during the decompacting stage and how to improve the homogeneous densification between the upper and lower surface and the evenness of the upper surface of the compacted powder bed by using relaxation assists, and the influences of the relaxation assist device on the process characteristics. It was found that the relaxation assist improves the compaction of the polymer powder by locking the powder bed in the compacted form. In addition, the relative times of the compacting stage, decompacting stage and the reorganisation of the particles can be controlled by altering the height of the relaxation assist. It was found that the high-velocity compaction process is an interruption process and that the delay times between the pressure waves can be reduced by increasing the height of the relaxation assist device. Furthermore, the first gross instantaneous springback and the total elastic springback are reduced.</p><p>Two bonding strain gauges and a high-speed video camera system were used to investigate the springback phenomenon during the compaction process. Scanning electron microscopy (SEM) and image computer board Camera (IC-PCI Imaging Technology) were used to the study the morphological characteristics, the limit of plastic deformation and particle bonding by plastic flow at contact points, and pull-out phenomena.</p> / QC 20100506
|
3 |
Improved high velocity cold copaction processing : polymer powder to high performance partsAzhdar, Bruska January 2005 (has links)
A uniaxial High-Velocity Compaction (HVC) process for polymer powder using a cylindrical, hardened steel die and a new technique with relaxation assist was tested with a focus on the compactibility characteristics and surface morphology of the compacted materials using various heights of relaxation assist device with different compacting profiles. Relaxation assist device was presented as a new technique to reduce springback, pull-out phenomenon and to improve the compaction process. The basic phenomena associated with HVC are explained and the general energy principle is introduced to explain pull-out phenomenon during the decompacting stage. In this study, polyamide-11 powders with different particle size distributions have been compacted with the application of different compaction profiles, e.g. different energies and velocities. It was found that the relative green density is influenced more by the pre-compacting (primary compaction step) than by the post-compacting (secondary compaction step). Experimental results for different compaction profiles were presented showing the effect of varying the opposite velocity during the decompacting stage and how to improve the homogeneous densification between the upper and lower surface and the evenness of the upper surface of the compacted powder bed by using relaxation assists, and the influences of the relaxation assist device on the process characteristics. It was found that the relaxation assist improves the compaction of the polymer powder by locking the powder bed in the compacted form. In addition, the relative times of the compacting stage, decompacting stage and the reorganisation of the particles can be controlled by altering the height of the relaxation assist. It was found that the high-velocity compaction process is an interruption process and that the delay times between the pressure waves can be reduced by increasing the height of the relaxation assist device. Furthermore, the first gross instantaneous springback and the total elastic springback are reduced. Two bonding strain gauges and a high-speed video camera system were used to investigate the springback phenomenon during the compaction process. Scanning electron microscopy (SEM) and image computer board Camera (IC-PCI Imaging Technology) were used to the study the morphological characteristics, the limit of plastic deformation and particle bonding by plastic flow at contact points, and pull-out phenomena. / QC 20100506
|
4 |
Évaluation des performances thermomécaniques des enrobés bitumineux à fort taux de recyclage : Apport du procédé de régénération Fenixfalt / Evaluation of the thermo mechanical performances of bituminous mixes with high recycling rates. Contribution of Fenixfalt rejuvenation process.Alvarado patino, Nelson Andrey 05 December 2018 (has links)
Une étude expérimentale a été effectuée sur diverses formules de trois familles d’enrobés bitumineux avec des taux de recyclage variables et la présence ou non de régénérant. La composition des mélanges et le procédé de fabrication ont été élaborés afin d’effectuer une étude comparative. L’enrobage produit des variations des paramètres physico-chimiques des liants telles que la consistance, la température de transition vitreuse, les fractions cristallisables, les taux d’aromatiques et d’asphaltènes ; ces variations sont limitées en présence de régénérant. Lorsque le taux d’AE augmente, la compactibilité et l’orniérage des mélanges diminuent et leur rigidité viscoélastique augmente, mais le régénérant limite ces variations. Globalement, les AE produisent une augmentation de la résistance à la fatigue des formules et un aplatissement des droites de Wöhler. Le régénérant améliore le paramètre de fatigue ɛ6 ; les performances en fatigue augmentent avec la TBA et l’indice colloïdal du liant ainsi qu’avec la diminution de la viscosité de l’enrobé. L’impact favorable d’un taux élevé d’AE et du régénérant sur le trafic admissible a été déterminé suite au dimensionnement d’une structure souple tri-couche. À basse température, la détérioration par les AE de la ductilité en traction et de la température de rupture par retrait empêché se trouvent limitées par le régénérant ; un compromis est cependant à trouver avec la résistance à la fatigue. Les formules régénérées mises en œuvre sur la couche de roulement d’une route départementale ont subi une moindre évolution après six ans de service que les mélanges non régénérés. / An experimental programme has been performed on three types of bituminous mixes with variable recycling rates and the possible addition of rejuvenator. The mix composition and the production process have been defined in order to perform a comparative analysis. The coating process modifies the physico-chemical parameters of the binders, like consistency, glassy transition temperature, cristallizable moiety, aromatics and asphaltenes rates; the above variations are limited by using the rejuvenator. As the RAP content increases, the compactibility and the rutting of the mixes decrease and the viscoelastic stiffness increases, but the rejuvenation reduces these variations. Globally, RAP increases the fatigue resistance of the mixes and flattens the Wöhler curve. Rejuvenation enhances ɛ6 fatigue parameter; fatigue performances increase with R&B temperature and colloidal index of the binder and as the viscous component of the mixes decreases. The positive impact of a high rate of RAP and of the rejuvenation on the allowable traffic has been evaluated from the structural design of a threelayered pavement. At low temperature, the deterioration of the tension ductility and of the stress restrained failure temperature produced by the RAP, is limited by the rejuvenation; a compromise with the fatigue resistance has to be found. The rejuvenated mixes laid as surface layers on a provincial road have experienced a smaller evolution that non rejuvenated mixes.
|
Page generated in 0.0754 seconds