• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 56
  • 7
  • 7
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 167
  • 106
  • 101
  • 48
  • 31
  • 31
  • 27
  • 26
  • 22
  • 19
  • 19
  • 17
  • 16
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Use of Macro Basalt Fibre Concrete for Marine Applications

Mohammadi Mohaghegh, Ali January 2016 (has links)
Deterioration of concrete structures due to the corrosion of embedded steel is a well-known universal problem. Norway with its numerous bridges, ports, offshore and floating structures along its coastline, is also encountered with corrosion degradation. The harsh environment of the Norwegian Sea regarding its low temperature, wind, and waves, makes the design and construction of marine structures more demanding. In recent years, usage of sustainable composite materials in the field of structural engineering has been rising. The usage of natural fibre reinforced polymer materials in the form of reinforcement bars or macro fibres with a low density, high strength, and excellent corrosion resistance, gives us better choices for the design and construction of marine structures. Our knowledge about the fibre reinforced self-compacting concrete has increased as a result of introducing it as a building material some decades ago. However, more research is still needed when it comes to the application of new types of fibres. This thesis is a result of this need, whereby the author has done two series of experimental programmes regarding the subject. In the first series, the flow characteristics of fresh state, conventional and self-compacting macro basalt fibre concrete were studied. In the second series, mechanical properties of high performance and medium strength macro basalt fibre concrete including the post-cracking behaviour, compressive strength and electrical resistivity were in focus. The findings were presented in three appended papers and the extended summary composing this thesis. Additionally, the thesis presents an overview of the design procedure of floating concrete structures and the possibility of using macro basalt fibre concrete via a case study. The author’s literature review shows that basalt fibres have an adequate resistance against alkali environment of the concrete matrix and corrosive environment of seawater. / <p>QC 20160607</p>
82

Behaviour of elliptical tube columns filled with self-compacting concrete

Mahgub, Munir January 2016 (has links)
The present research is conducted to investigate the behaviour of elliptical tube columns filled with self-compacting concrete (SCC). In total, ten specimens, including two empty columns, were tested to failure. The main parameters investigated were the length and the sections of the columns, and the concrete compressive strength. Artificial Neural Network (ANN) model was developed to predict the compressive strength of SCC using a comprehensive database collected from different previous studies. The database was used to train and test the developed ANN. Moreover, parallel to the experimental works, a three dimensional nonlinear finite element (FE) model using ABAQUS software was developed to predict the behaviour of SCC elliptical tube columns. The proposed ABAQUS model was verified against the current experimental results. The experimental results indicated that the failure modes of the SCC filled elliptical steel tube columns having large slenderness ratios were dominated by global buckling. Moreover, the composite columns possessed higher critical axial compressive capacities compared with their hollow section companions due to the composite interaction. However, due to the large slenderness ratio of the test specimens, the change of compressive strength of concrete core did not show significant effect on the critical axial compressive capacity of concrete filled columns although the axial compressive capacity increased with the concrete grade increase. The comparisons between the axial compressive load capacities obtained from experimental study and those predicted using simple methods provided in Eurocode 4 for concrete-filled steel rectangular tube columns showed a reasonable agreement. The proposed three dimensional FE model accurately predicted the failure modes, the load capacity and the load-deflection response of the columns tested. The experimental results, analysis and comparisons presented in this thesis clearly support the application of self-compacting concrete filled elliptical steel tube columns in construction engineering practice.
83

Drying shrinkage of self-compacting concrete incorporating fly ash

Abdalhmid, Jamila M.A. January 2019 (has links)
The present research is conducted to investigate long term (more than two years) free and confined drying shrinkage magnitude and behaviour of self-compacting concrete (SCC) and compare with normal concrete (NC). For all SCCs mixes, Portland cement was replaced with 0-60% of fly ash (FA), fine and coarse aggregates were kept constant at 890 kg/m3 and 780 kg/m3, respectively. Two different water binder ratios of 0.44 and 0.33 were examined for both SCCs and NCs. Fresh properties of SCCs such as filling ability, passing ability, viscosity and resistance to segregation and hardened properties such as compressive and flexural strengths, water absorption and density of SCCs and NCs were also determined. Experimental results of free drying shrinkage obtained from this study together with collected comprehensive database from different sources available in the literature were compared to five existing models, namely the ACI 209R-92 model, BSEN-92 model, ACI 209R-92 (Huo) model, B3 model, and GL2000 model. To assess the quality of predictive models, the influence of various parameters (compressive strength, cement content, water content and relative humidity) on the drying shrinkage strain are studied. An artificial neural network models (ANNM) for prediction of drying shrinkage strains of SCC was developed using the same data used in the existing models. Two ANNM sets namely ANNM1 and ANNM2 with different numbers of hidden layer neurones were constructed. Comparison between the results given by the ANNM1 model and the results obtained by the five existing predicted models were presented. The results showed that, using up to 60% of FA as cement replacement can produce SCC with a compressive strength as high as 30 MPa and low drying shrinkage strain. SCCs long-term drying shrinkage from 356 to 1000 days was higher than NCs. Concrete filled elliptical tubes (CFET) with self-compacting concrete containing FA up to 60% are recommended for use in construction in order to prevent confined drying strain. ACI 209R-92 model provided a better prediction of drying shrinkage compared with the other four models. However, a very high predictability with high accuracy was achieved with the ANNM1 model with a mean of 1.004. Moreover, by using ANNM models, it is easy to insert any of factors effecting drying shrinkage to the input parameters to predict drying shrinkage strain of SCC. / Ministry of Higher Education, Libya
84

Experimental investigation on continuous reinforced SCC deep beams and Comparisons with Code provisions and models

Khatab, Mahmoud A.T., Ashour, Ashraf, Sheehan, Therese, Lam, Dennis 14 November 2016 (has links)
Yes / The test results on eight two-span deep beams made of self-compacting concrete (SCC) are presented and discussed in this paper. The main parameters investigated were the shear span-to-depth ratio, and the amount and configuration of steel reinforcement. All beams failed due to a major diagonal crack formed between the applied mid-span load and the intermediate support separating the beam into two blocks: the first one rotated around the end support leaving the other block resting on the other two supports. Both concrete compressive strength and web reinforcement had a major effect in controlling the shear capacity of the beams tested. For the shear span-to-depth ratio considered, the vertical web reinforcement had more influence on the shear capacity of the specimens than the horizontal web reinforcement. The shear provisions of the ACI 318M-11 are unconservative for most of the beams tested. Comparisons of test results with the strut-and-tie model (STM) suggested by ACI 318M-11, EC2 and CSA23.4-04 showed that the predictions are reasonable for continuous deep beams made with low and medium compressive strength. Although the equation suggested by ACI 318M-11 is very simple, its prediction is more accurate than the STM suggested by different design codes. / This research investigation was funded by the Higher Education Ministry in The Libyan Government.
85

Effectiveness factor of self-compacting concrete in compression for limit analysis of continuous deep beams

Khatab, Mahmoud A.T., Ashour, Ashraf 20 March 2018 (has links)
Yes / The current design codes, such as ACI 318-14, EC2 and CSA23.3-04, in addition to previous research investigations suggested different expressions for concrete effectiveness factor for use in limit state design of concrete structures. All these equations are based on different design parameters and proposed for normal concrete deep beams. This research evaluates the use of different effectiveness factor equations in the upper and lower bond analyses of continuously-supported self-compacting concrete (SCC) deep beams. Moreover, a new effectiveness factor expression is suggested to be used for upper and lower bound solutions with the aim of improving predictions of the load capacity of continuously-supported SCC deep beams. For the range of deep beams considered, the strut-and-tie method with the proposed effectiveness factor formula achieved accurate predictions, with a mean of 1.01, a standard deviation of 6.7% and a coefficient of variation of 6.8%. For the upper-bound analysis, the predictions of the proposed effectiveness factor equation were more accurate than those of the formulas suggested by previous investigations. Overall, although the proposed effectiveness factor achieved very accurate predictions, further validation for the proposed formula is needed since the only data available on continuous SCC deep beams are those collected form the current study.
86

Prediction of self-compacting concrete elastic modulus using two symbolic regression techniques

Golafshani, E.M., Ashour, Ashraf 28 December 2015 (has links)
yes / This paper introduces a novel symbolic regression approach, namely biogeographical-based programming (BBP), for the prediction of elastic modulus of self-compacting concrete (SCC). The BBP model was constructed directly from a comprehensive dataset of experimental results of SCC available in the literature. For comparison purposes, another new symbolic regression model, namely artificial bee colony programming (ABCP), was also developed. Furthermore, several available formulas for predicting the elastic modulus of SCC were assessed using the collected database. The results show that the proposed BBP model provides slightly closer results to experiments than ABCP model and existing available formulas. A sensitivity analysis of BBP parameters also shows that the prediction by BBP model improves with the increase of habitat size, colony size and maximum tree depth. In addition, among all considered empirical and design code equations, Leemann and Hoffmann and ACI 318-08’s equations exhibit a reasonable performance but Persson and Felekoglu et al.’s equations are highly inaccurate for the prediction of SCC elastic modulus.
87

An experimental study on elliptical concrete filled columns under axial compression.

Jamaluddin, N., Lam, Dennis, Dai, Xianghe, Ye, J. January 2013 (has links)
This paper presents the experimental results and observation of elliptical concrete filled tube (CFT) columns subjected to axial compressive load. A total of twenty-six elliptical CFT specimens including both stub and slender composite columns are tested to failure to investigate the axial compressive behaviour. Various column lengths, sectional sizes and infill concrete strength are used to quantify the influence of member geometry and constituent material properties on the structural behaviour of elliptical CFT columns. As there is no design guidance currently available in any Code of Practice, this study provides a review of the current design rules for concrete filled circular hollow sections in Eurocode 4 (EC4). New equations based on the Eurocode 4 provisions for concrete filled circular hollow sections were proposed and used to predict the capacities of elliptical CFT columns.
88

Tests of self-compacting concrete filled elliptical steel tube columns

Mahgub, Munir, Ashour, Ashraf, Lam, Dennis, Dai, Xianghe 24 October 2016 (has links)
Yes / This paper presents an experimental study into the axial compressive behaviour of self-compacting concrete filled elliptical steel tube columns. In total, ten specimens, including two empty columns, with various lengths, section sizes and concrete strengths were tested to failure. The experimental results indicated that the failure modes of the self-compacting concrete filled elliptical steel tube columns with large slenderness ratio were dominated by global buckling. Furthermore, the composite columns possessed higher critical axial compressive capacities compared with their hollow section companions due to the composite interaction. However, due to the large slenderness ratio of the test specimens, the change of compressive strength of concrete core did not show significant effect on the critical axial compressive capacity of concrete filled columns although the axial compressive capacity increased with the concrete grade increase. The comparison between the axial compressive load capacities obtained from experimental study and prediction using simple methods provided in Eurocode 4 for concrete-filled steel circular tube columns showed a reasonable agreement. The experimental results, analysis and comparison presented in this paper clearly support the application of self-compacting concrete filled elliptical steel tube columns in construction engineering practice.
89

Long-term drying shrinkage of self-compacting concrete: experimental and analytical investigations

Abdalhmid, Jamila M., Ashour, Ashraf, Sheehan, Therese 18 January 2019 (has links)
Yes / The present study investigated long-term drying shrinkage strains of self-compacting concrete (SCCs). For all SCCs mixes, Portland cement was replaced with 0–60% of fly ash (FA), fine and course aggregates were kept constant with 890 kg/m3 and 780 kg/m3, respectively. Two different water binder ratios of 0.44 and 0.33 were examined for both SCCs and normal concrete (NCs). Fresh properties of SCCs such as filling ability, passing ability, viscosity and resistance to segregation and hardened properties such as compressive and flexural strengths, water absorption and density of SCCs and NCs were also determined. Experimental results of drying shrinkage were compared to five existing models, namely the ACI 209R-92 model, BSEN-92 model, ACI 209R-92 (Huo) model, B3 model, and GL2000. To assess the quality of predictive models, the influence of various parameters (compressive strength, cement content, water content and relative humidity) effecting on the drying shrinkage strain as considered by the models are studied. The results showed that, using up to 60% of FA as cement replacement can produce SCC with a compressive strength as high as 30 MPa and low drying shrinkage strain. SCCs long-term drying shrinkage from 356 to 1000 days was higher than NCs. ACI 209R-92 model provided a better prediction of drying shrinkage compared with the other models. / Financial support of Higher Education of Libya (469/2009).
90

The effect of machine and tire size on soil compaction due to skidding with rubber-tired skidders

Greene, Walter Dale January 1983 (has links)
M.S.

Page generated in 0.4922 seconds