• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Emergent properties of nonlinear compartmentalised dynamics

Voorsluijs, Valérie 13 July 2018 (has links)
Systems chemistry aims at studying and developing "smart" materials displaying reactivity to external stimuli, metabolism, self-repair abilities and self-replication properties. These features constitute the principal characteristics of living systems that smart materials tend to mimic. The synthesis strategies of these materials are still in their infancy, and identifying the mechanisms underlying emergent phenomena could lead to a better control and use of these behaviours in the synthesis of new materials. The complex dynamics of biological systems usually arises from the coupling of compartmentalised units in which nonlinear chemical reactions take place. In this thesis, we are interested in the complex dynamics emerging from such compartmentalisation of a reactive system. First, we analyse the impact of fluctuations of concentration on the dynamics of a chemical oscillatory reaction, namely the Belousov-Zhabotinsky reaction. We show that oscillations are more robust against fluctuations than other behaviours generated by the reaction (birhythmicity, chaos, ) and highlight different mechanisms by which oscillations can arise from fluctuations. Then, we study a model for chemical chaos, the so-called Willamowsky-Rössler model, in which we incorporate fluctuations and crowding effects. Fluctuations have a destructive effect on chaotic dynamics but when the reaction takes place on a surface where the different species can diffuse and react, a synergy develops between fluctuations, crowding effects and the mobility of the particles. This synergy enhances the re-emergence of chaos and the development of new behaviours. Finally, we show throughout different modelling approaches that compartmentalisation effects play a central role in the intracellular calcium dynamics and emphasise how microscopic properties of the system shape the global behaviour of this system. Compartmentalised nonlinear dynamics thus offer a wide range of future prospects for the synthesis of smart materials and fosters the development of nanoreactors based on these properties. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
2

A mathematical framework for designing and evaluating control strategies for water- & food-borne pathogens : a norovirus case study

McMenemy, Paul January 2017 (has links)
Norovirus (NoV) is a significant cause of gastroenteritis globally, and the consumption of oysters is frequently linked to outbreaks. Depuration is the principle means employed to reduce levels of potentially harmful agents or toxins in shellfish. The aim of this thesis is to construct mathematical models which can describe the depuration dynamics of water-borne pathogens, and specifically examine the dynamics of NoV during depuration for a population shellfish. Legislation is currently under consideration within the EU by the Directorate-General for Health and Consumers (DG SANCO) to limit the maximum level of NoV that consumers are exposed to via this route. Therefore it is important to the utility of the thesis that any models constructed should incorporate control measures which could be used to implement minimum NoV levels. Doing so allowed calculation of minimum depuration times that would be required to adhere to the control measures incorporated into the models. In addition to modelling the impact on pathogens during the depuration, we wished to gain some insight into how the variability, and not just the mean levels, of water-borne pathogens can be as important with respect to the length of depuration required to minimise any food safety risks to the consumer. This proved difficult in the absence of any data sets that can be used to calculate variability measures, as little data is currently available to inform these values for NoV. However, our modelling techniques were able to calculate an upper limit on the variability of water-borne pathogens that can be well approximated by lognormal distributions. Finally we construct a model which provided linkage between the depuration process and the accretion of pathogens by shellfish while still within farming waters. This model proposed that the pulses of untreated waste waters released by sewage treatment works due to high levels of rainfall would be transmitted into shellfish whilst filter-feeding.

Page generated in 0.0988 seconds