• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exercise, appetite and weight management: understanding the compensatory responses in eating behaviour and how they contribute to variability in exercise-induced weight loss.

King, N., Horner, K., Byrne, N., Wood, R., Bryant, Eleanor J., Caudwell, P., Finlayson, G., Gibbons, C., Hopkins, M., Martins, C., Blundell, J.E., Hills, A.P. 2011 May 1919 (has links)
yes / Does exercise promote weight loss? One of the key problems with studies assessing the effi cacy of exercise as a method of weight management and obesity is that mean data are presented and the individual variability in response is overlooked. Recent data have highlighted the need to demonstrate and characterise the individual variability in response to exercise. Do people who exerc ise compensate for the increase in energy expenditure via compensatory increases in hunger and food intake? The authors address the physiological, psychological and behavioural factors potentially involved in the relationship between exercise and appetite, and identify the research questions that remain unanswered. A negative consequence of the phenomena of individual variability and compensatory responses has been the focus on those who lose little weight in response to exercise; this has been used unreasonably as evidence to suggest that exercise is a futile method of controlling weight and managing obesity. Most of the evidence suggests that exercise is useful for improving body composition and health. For example, when exercise-induced mean weight loss is <1.0 kg, signifi cant improvements in aerobic capacity (+6.3 ml/kg/min), systolic (¿6.00 mm Hg) and diastolic (¿3.9 mm Hg) blood pressure, waist circumference (¿3.7 cm) and positive mood still occur. However, people will vary in their responses to exercise; understanding and characterising this variability will help tailor weight loss strategies to suit individuals.
2

Effects of hypothermically reduced plantar skin inputs on anticipatory and compensatory balance responses

Germano, Andresa M. de Castro, Schmidt, Daniel, Milani, Thomas L. 30 August 2016 (has links) (PDF)
Background Anticipatory and compensatory balance responses are used by the central nervous system (CNS) to preserve balance, hence they significantly contribute to the understanding of physiological mechanisms of postural control. It is well established that various sensory systems contribute to the regulation of balance. However, it is still unclear which role each individual sensory system (e.g. plantar mechanoreceptors) plays in balance regulation. This becomes also evident in various patient populations, for instance in diabetics with reduced plantar sensitivity. To investigate these sensory mechanisms, approaches like hypothermia to deliberately reduce plantar afferent input have been applied. But there are some limitations regarding hypothermic procedures in previous studies: Not only plantar aspects of the feet might be affected and maintaining the hypothermic effect during data collection. Therefore, the aim of the present study was to induce a permanent and controlled plantar hypothermia and to examine its effects on anticipatory and compensatory balance responses. We hypothesized deteriorations in anticipatory and compensatory balance responses as increased center of pressure excursions (COP) and electromyographic activity (EMG) in response to the hypothermic plantar procedure. 52 healthy and young subjects (23.6 ± 3.0 years) performed balance tests (unexpected perturbations). Subjects’ foot soles were exposed to three temperatures while standing upright: 25, 12 and 0 °C. COP and EMG were analyzed during two intervals of anticipatory and one interval of compensatory balance responses (intervals 0, 1 and 2, respectively). Results Similar plantar temperatures confirmed the successful implementation of the thermal platform. No significant COP and EMG differences were found for the anticipatory responses (intervals 0 and 1) under the hyperthermia procedure. Parameters in interval 2 showed generally decreased values in response to cooling. Conclusion No changes in anticipatory responses were found possibly due to sensory compensation processes of other intact afferents. Decreased compensatory responses may be interpreted as the additional balance threat, creating a more cautious behavior causing the CNS to generate a kind of over-compensatory behavior. Contrary to the expectations, there were different anticipatory and compensatory responses after reduced plantar inputs, thereby, revealing alterations in the organization of CNS inputs and outputs according to different task difficulties.
3

Examination of potential elicitors of operant and respondent behaviors in smokers

Segura, Valerie D. 01 January 2014 (has links)
Research on operant learning principles suggests that discriminative stimuli, and negative and positive reinforcement play a role in the maintenance of smoking behavior. Smoking research from a respondent learning paradigm focuses on the role of environmental stimuli that function as elicitors of physiological responses related to smoking. Basic research suggests that compensatory responses may play a role in drug tolerance and relapse. In one preliminary study assessing the role of compensatory responses to smoking stimuli (Machado, 2011), drops in carbon monoxide (CO) were observed only when smokers viewed smoking related stimuli. However, it is possible that these patterns were influenced by CO monitor sensitivity to differing exhalation durations in which exhalation duration may have been under stimulus control of the smoking stimuli. The purpose of the current study was twofold: Study 1 controlled for exhalation duration by holding exhalation duration constant using a within subject design and Study 2 precisely measured but did not control total exhalation duration in an attempt to replicate the results from Machado (2011). Results from Study 1 did not support the presence of compensatory responses in smokers; results from Study 2 did not support the presence of operantly maintained exhalation durations. Study limitations, implications and future directions are discussed.
4

Effects of hypothermically reduced plantar skin inputs on anticipatory and compensatory balance responses

Germano, Andresa M. de Castro, Schmidt, Daniel, Milani, Thomas L. 30 August 2016 (has links)
Background Anticipatory and compensatory balance responses are used by the central nervous system (CNS) to preserve balance, hence they significantly contribute to the understanding of physiological mechanisms of postural control. It is well established that various sensory systems contribute to the regulation of balance. However, it is still unclear which role each individual sensory system (e.g. plantar mechanoreceptors) plays in balance regulation. This becomes also evident in various patient populations, for instance in diabetics with reduced plantar sensitivity. To investigate these sensory mechanisms, approaches like hypothermia to deliberately reduce plantar afferent input have been applied. But there are some limitations regarding hypothermic procedures in previous studies: Not only plantar aspects of the feet might be affected and maintaining the hypothermic effect during data collection. Therefore, the aim of the present study was to induce a permanent and controlled plantar hypothermia and to examine its effects on anticipatory and compensatory balance responses. We hypothesized deteriorations in anticipatory and compensatory balance responses as increased center of pressure excursions (COP) and electromyographic activity (EMG) in response to the hypothermic plantar procedure. 52 healthy and young subjects (23.6 ± 3.0 years) performed balance tests (unexpected perturbations). Subjects’ foot soles were exposed to three temperatures while standing upright: 25, 12 and 0 °C. COP and EMG were analyzed during two intervals of anticipatory and one interval of compensatory balance responses (intervals 0, 1 and 2, respectively). Results Similar plantar temperatures confirmed the successful implementation of the thermal platform. No significant COP and EMG differences were found for the anticipatory responses (intervals 0 and 1) under the hyperthermia procedure. Parameters in interval 2 showed generally decreased values in response to cooling. Conclusion No changes in anticipatory responses were found possibly due to sensory compensation processes of other intact afferents. Decreased compensatory responses may be interpreted as the additional balance threat, creating a more cautious behavior causing the CNS to generate a kind of over-compensatory behavior. Contrary to the expectations, there were different anticipatory and compensatory responses after reduced plantar inputs, thereby, revealing alterations in the organization of CNS inputs and outputs according to different task difficulties.

Page generated in 0.076 seconds