• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 120
  • 37
  • 28
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 296
  • 179
  • 122
  • 103
  • 100
  • 68
  • 47
  • 42
  • 42
  • 40
  • 40
  • 37
  • 37
  • 36
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Locating Potential Aspect Interference Using Clustering Analysis

Bennett, Brian Todd 01 May 2015 (has links)
Software design continues to evolve from the structured programming paradigm of the 1970s and 1980s and the object-oriented programming (OOP) paradigm of the 1980s and 1990s. The functional decomposition design methodology used in these paradigms reduced the prominence of non-functional requirements, which resulted in scattered and tangled code to address non-functional elements. Aspect-oriented programming (AOP) allowed the removal of crosscutting concerns scattered throughout class code into single modules known as aspects. Aspectization resulted in increased modularity in class code, but introduced new types of problems that did not exist in OOP. One such problem was aspect interference, in which aspects meddled with the data flow or control flow of a program. Research has developed various solutions for detecting and addressing aspect interference using formal design and specification methods, and by programming techniques that specify aspect precedence. Such explicit specifications required practitioners to have a complete understanding of possible aspect interference in an AOP system under development. However, as system size increased, understanding of possible aspect interference could decrease. Therefore, practitioners needed a way to increase their understanding of possible aspect interference within a program. This study used clustering analysis to locate potential aspect interference within an aspect-oriented program under development, using k-means partitional clustering. Vector space models, using two newly defined metrics, interference potential (IP) and interference causality potential (ICP), and an existing metric, coupling on advice execution (CAE), provided input to the clustering algorithms. Resulting clusters were analyzed via an internal strategy using the R-Squared, Dunn, Davies-Bouldin, and SD indexes. The process was evaluated on both a smaller scale AOP system (AspectTetris), and a larger scale AOP system (AJHotDraw). By seeding potential interference problems into these programs and comparing results using visualizations, this study found that clustering analysis provided a viable way for detecting interference problems in aspect-oriented software. The ICP model was best at detecting interference problems, while the IP model produced results that were more sporadic. The CAE clustering models were not effective in pinpointing potential aspect interference problems. This was the first known study to use clustering analysis techniques specifically for locating aspect interference.
202

Reaper – Toward Automating Mobile Cloud Communication

Ward, Daniel R 06 August 2013 (has links)
Mobile devices connected to cloud based services are becoming a mainstream method of delivery up-to-date and context aware information to users. Connecting mobile applications to cloud service require significant developer effort. Yet this communication code usually follows certain patterns, varying accordingly to the specific type of data sent and received from the server. By analyzing the causes of theses variations, we can create a system that can automate the code creation for communication from a mobile device to a cloud server. To automate code creation, a general pattern must extracted. This general solution can then be applied to any database configuration. Automating this process frees up valuable development time, allowing developers to make other parts of the application and/or backend service a better experience for the end user.
203

The object-oriented design of a hardware description language analyser for the DIADES silicon compiler system

Yang, Lian 01 January 1990 (has links)
This thesis is one of the first to introduce a systematic and general Source Language Analysis System (called SLA) for a high -level synthesis system.
204

Integrated Software Pipelining

Eriksson, Mattias January 2009 (has links)
<p>In this thesis we address the problem of integrated software pipelining for clustered VLIW architectures. The phases that are integrated and solved as one combined problem are: cluster assignment, instruction selection, scheduling, register allocation and spilling.</p><p>As a first step we describe two methods for integrated code generation of basic blocks. The first method is optimal and based on integer linear programming. The second method is a heuristic based on genetic algorithms.</p><p>We then extend the integer linear programming model to modulo scheduling. To the best of our knowledge this is the first time anybody has optimally solved the modulo scheduling problem for clustered architectures with instruction selection and cluster assignment integrated.</p><p>We also show that optimal spilling is closely related to optimal register allocation when the register files are clustered. In fact, optimal spilling is as simple as adding an additional virtual register file representing the memory and have transfer instructions to and from this register file corresponding to stores and loads.</p><p>Our algorithm for modulo scheduling iteratively considers schedules with increasing number of schedule slots. A problem with such an iterative method is that if the initiation interval is not equal to the lower bound there is no way to determine whether the found solution is optimal or not. We have proven that for a class of architectures that we call transfer free, we can set an upper bound on the schedule length. I.e., we can prove when a found modulo schedule with initiation interval larger than the lower bound is optimal.</p><p>Experiments have been conducted to show the usefulness and limitations of our optimal methods. For the basic block case we compare the optimal method to the heuristic based on genetic algorithms.<em></em></p><p><em>This work has been supported by The Swedish national graduate school in computer science (CUGS) and Vetenskapsrådet (VR).</em></p>
205

Open Code Translation from Executable and Translatable UML Models - Implicit Bridging

Löfqvist, Mikael January 2007 (has links)
<p>Executable and Translatable UML (xtUML) is the next abstraction level in software development, where both programming language and software architecture have been abstracted away. xtUML is a well defined UML profile, extended with precise action semantics. This allows the developers to define a problem area, domain, in such a detail that it can be executed. By defining the system with xtUML-models, domains, the system functionality can be verified early in the development process. Translation to code can be done in different ways and this work will be performed in an environment where code is automatically generated with a model compiler.</p><p>The goal with a domain is that it should be independent of other domains, reused without modification and exchanged with another domain solving the same problem. However a domain can make assumptions that certain functionality is available and these assumptions are requirements for another domain.</p><p>To fulfil these goals there must be a minimal coupling between the domains. This can be solved with the technique Implicit Bridging, where the bridge dependency between domains is defined in a bridge. The dependency is in the form of mappings/coupling between elements in both domains. By defining a bridge interface for a server domain a client domain can use the resources offered by the server domain.</p><p>The work performed shows how an implementation of Implicit Bridging could be realized by applying the technique in a microwave oven system. From the system design five different mapping types have been implemented. The applicability and the quality of the implementation have been verified by testing the generated system functionality and also verifying the goals, exchangeability and reuse of domains, of the system.</p>
206

Dynamic program analysis algorithms to assist parallelization

Kim, Minjang 24 August 2012 (has links)
All market-leading processor vendors have started to pursue multicore processors as an alternative to high-frequency single-core processors for better energy and power efficiency. This transition to multicore processors no longer provides the free performance gain enabled by increased clock frequency for programmers. Parallelization of existing serial programs has become the most powerful approach to improving application performance. Not surprisingly, parallel programming is still extremely difficult for many programmers mainly because thinking in parallel is simply beyond the human perception. However, we believe that software tools based on advanced analyses can significantly reduce this parallelization burden. Much active research and many tools exist for already parallelized programs such as finding concurrency bugs. Instead we focus on program analysis algorithms that assist the actual parallelization steps: (1) finding parallelization candidates, (2) understanding the parallelizability and profits of the candidates, and (3) writing parallel code. A few commercial tools are introduced for these steps. A number of researchers have proposed various methodologies and techniques to assist parallelization. However, many weaknesses and limitations still exist. In order to assist the parallelization steps more effectively and efficiently, this dissertation proposes Prospector, which consists of several new and enhanced program analysis algorithms. First, an efficient loop profiling algorithm is implemented. Frequently executed loop can be candidates for profitable parallelization targets. The detailed execution profiling for loops provides a guide for selecting initial parallelization targets. Second, an efficient and rich data-dependence profiling algorithm is presented. Data dependence is the most essential factor that determines parallelizability. Prospector exploits dynamic data-dependence profiling, which is an alternative and complementary approach to traditional static-only analyses. However, even state-of-the-art dynamic dependence analysis algorithms can only successfully profile a program with a small memory footprint. Prospector introduces an efficient data-dependence profiling algorithm to support large programs and inputs as well as provides highly detailed profiling information. Third, a new speedup prediction algorithm is proposed. Although the loop profiling can give a qualitative estimate of the expected profit, obtaining accurate speedup estimates needs more sophisticated analysis. Prospector introduces a new dynamic emulation method to predict parallel speedups from annotated serial code. Prospector also provides a memory performance model to predict speedup saturation due to increased memory traffic. Compared to the latest related work, Prospector significantly improves both prediction accuracy and coverage. Finally, Prospector provides algorithms that extract hidden parallelism and advice on writing parallel code. We present a number of case studies how Prospector assists manual parallelization in particular cases including privatization, reduction, mutex, and pipelining.
207

Environment Analysis of Higher-Order Languages

Might, Matthew Brendon 29 June 2007 (has links)
Any analysis of higher-order languages must grapple with the tri-facetted nature of lambda. In one construct, the fundamental control, environment and data structures of a language meet and intertwine. With the control facet tamed nearly two decades ago, this work brings the environment facet to heel, defining the environment problem and developing its solution: environment analysis. Environment analysis allows a compiler to reason about the equivalence of environments, i.e., name-to-value mappings, that arise during a program's execution. In this dissertation, two different techniques-abstract counting and abstract frame strings-make this possible. A third technique, abstract garbage collection, makes both of these techniques more precise and, counter to intuition, often faster as well. An array of optimizations and even deeper analyses which depend upon environment analysis provide motivation for this work. In an abstract interpretation, a single abstract entity represents a set of concrete entities. When the entities under scrutiny are bindings-single name-to-value mappings, the atoms of environment-then determining when the equality of two abstract bindings infers the equality of their concrete counterparts is the crux of environment analysis. Abstract counting does this by tracking the size of represented sets, looking for singletons, in order to apply the following principle: If {x} = {y}, then x = y. Abstract frame strings enable environmental reasoning by statically tracking the possible stack change between the births of two environments; when this change is effectively empty, the environments are equivalent. Abstract garbage collection improves precision by intermittently removing unreachable environment structure during abstract interpretation.
208

Comprehensive Path-sensitive Data-flow Analysis

Thakur, Aditya 07 1900 (has links)
Data-flow analysis is an integral part of any aggressive optimizing compiler. We propose a framework for improving the precision of data-flow analysis in the presence of complex control-flow. We initially perform data-flow analysis to determine those control-flow merges which cause the loss in data-flow analysis precision. The control-flow graph of the program is then restructured such that performing data-flow analysis on the resulting restructured graph gives more precise results. The proposed framework is both simple, involving the familiar notion of product automata, and also general, since it is applicable to any forward or backward data-flow analysis. Apart from proving that our restructuring process is correct, we also show that restructuring is effective in that it necessarily leads to more optimization opportunities. Furthermore, the framework handles the trade-off between the increase in data-flow precision and the code size increase inherent in the restructuring. We show that determining an optimal restructuring is NP-hard, and propose and evaluate a greedy heuristic. The framework has been implemented in the Scale research compiler, and instantiated for the specific problems of Constant Propagation and Liveness analysis. On the SPECINT 2000 benchmark suite we observe an average speedup of 4% in the running times over Wegman-Zadeck conditional constant propagation algorithm and 2% over a purely path profile guided approach for Constant Propagation. For the problem of Liveness analysis, we see an average speedup of 0.8% in the running times over the baseline implementation.
209

Efficient search-based strategies for polyhedral compilation : algorithms and experience in a production compiler

Trifunovic, Konrad 04 July 2011 (has links) (PDF)
In order to take the performance advantages of the current multicore and heterogeneous architectures the compilers are required to perform more and more complex program transformations. The search space of the possible program optimizations is huge and unstructured. Selecting the best transformation and predicting the potential performance benefits of that transformation is the major problem in today's optimizing compilers. The promising approach to handling the program optimizations is to focus on the automatic loop optimizations expressed in the polyhedral model. The current approaches for optimizing programs in the polyhedral model broadly fall into two classes. The first class of the methods is based on the linear optimization of the analytical cost function. The second class is based on the exhaustive iterative search. While the first approach is fast, it can easily miss the optimal solution. The iterative approach is more precise, but its running time might be prohibitively expensive. In this thesis we present a novel search-based approach to program transformations in the polyhedral model. The new method combines the benefits - effectiveness and precision - of the current approaches, while it tries to minimize their drawbacks. Our approach is based on enumerating the evaluations of the precise, nonlinear performance predicting cost-function. The current practice is to use the polyhedral model in the context of source-to-source compilers. We have implemented our techniques in a GCC framework that is based on the low level three address code representation. We show that the chosen level of abstraction for the intermediate representation poses scalability challenges, and we show the ways to overcome those problems. On the other hand, it is shown that the low level IR abstraction opens new degrees of freedom that are beneficial for the search-based transformation strategies and for the polyhedral compilation in general.
210

Τεχνικές μεταγλωττιστών για βελτιστοποίηση ειδικών πυρήνων λογισμικού

Σιουρούνης, Κωνσταντίνος 16 June 2011 (has links)
Με την ολοένα και αυξανόμενη τάση για ενσωματωμένα (embedded) και φορητά υπολογιστικά συστήματα της σύγχρονης εποχής, έχειδημιουργηθεί ένας ολόκληρος επιστημονικός κλάδος γύρω από τεχνικές βελτιστοποίησης μεταγλωττιστών για ειδικούς πυρήνες λογισμικού που εκτελούνται στα συστήματα αυτά. Κάνοντας χρήση τεχνικών βελτιστοποίησης τα κέρδη είναι πολλαπλά. Καταρχήν οι πυρήνες μπορούν να ολοκληρώσουν το χρόνο που απαιτείται για να ολοκληρωθεί η εκτέλεση τους σε πολύ μικρότερο διάστημα, έχοντας πολύ μικρότερες απαιτήσεις μνήμης. Επίσης μειώνονται οι ανάγκες τους σε επεξεργαστική ισχύ κάτι το οποίο άμεσα οδηγεί στη μείωση κατανάλωσης ενέργειας, στην αύξηση αυτονομίας τους σε περίπτωση που μιλάμε για φορητά συστήματα και στις ανάγκες για ψύξη των συστημάτων αυτών καθώς εκλύονται πολύ μικρότερα ποσά ενέργειας. Έτσι λοιπόν επιτυγχάνονται κέρδη σε πολλούς τομείς (χρόνος εκτέλεσης, ανάγκες μνήμης, αυτονομία, έκλυση θερμότητας) καθιστώντας τον κλάδο των βελτιστοποιήσεων ένα από τους πιο ταχέως αναπτυσσόμενους κλάδους. Εκτός όμως από την σκοπιά της αύξησης επιδόσεων, στην περίπτωση των ενσωματωμένων συστημάτων πραγματικού χρόνου (real time operations) που όταν ξεπερνιούνται οι διορίες χρόνου εκτέλεσης οδηγούνται σε υποβαθμισμένες επιδόσεις (soft real time) και ειδικότερα στην περίπτωση αυτών που οδηγούνται σε αποτυχία όταν ξεπερνιούνται οι διορίες αυτές (hard real time operations), οι τεχνικές αυτές αποτελούν ουσιαστικά μονόδρομο για την υλοποίηση των συστημάτων αυτών σε λογικά επίπεδα κόστους. Η διαδικασία όμως της ανάπτυξης βελτιστοποιήσεων δεν είναι αρκετή καθώς είναι εξίσου σημαντικό το κατά πόσο οι βελτιστοποιήσεις αυτές ταιριάζουν στην εκάστοτε αρχιτεκτονική του συστήματος. Εάν δε ληφθεί υπόψη η αρχιτεκτονική του συστήματος που θα εφαρμοστούν, τότε οι βελτιστοποιήσεις μπορούν να οδηγήσουν σε αντίθετα αποτελέσματα υποβαθμίζοντας την απόδοση του συστήματος. Στην παρούσα διπλωματική εργασία βελτιστοποιείται η διαδικασία πολλαπλασιασμού διανύσματος με πίνακα toeplitz. Κατά την εκπόνηση της αναπτύχθηκε πληθώρα χρονοπρογραμματισμών που στοχεύουν στην βελτιστοποίηση της διαδικασίας αυτής. Μετά από μια εις βάθους μελέτη της ιεραρχίας μνήμης και των τεχνικών βελτιστοποίησης που προσφέρονται για αποδοτικότερη εκμετάλλευσή της, αλλά και των κυριότερων τεχνικών βελτιστοποίησης μεταγλωττιστών, παρουσιάζονται οι κυριότεροι χρονοπρογραμματισμοί, από όσους αναπτύχθηκαν, με τον κάθε ένα να προσφέρει κέρδος σε διαφορετικές αρχιτεκτονικές συστημάτων. Κατά αυτό τον τρόπο αναπτύσσεται ένα εργαλείο που δέχεται σαν είσοδο την αρχιτεκτονική του συστήματος πάνω στο οποίο πρόκειται να γίνει βελτιστοποίηση του εν λόγω πυρήνα, αποκλείονται αρχικά οι χρονοπρογραμματισμοί που δεν είναι κατάλληλοι για την συγκεκριμένη αρχιτεκτονική, ενώ για τους υποψήφιους πιο αποδοτικούς γίνεται εξερεύνηση ούτως ώστε να επιλεγεί ο αποδοτικότερος. / --

Page generated in 0.047 seconds