• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

K-theoretic methods in the representation theory of p-adic analytic groups

Csige, Tamás 08 February 2017 (has links)
Sei G eine p-adische analytische gruppe, welche die direkte Summe einer torsionfreien p-adische analytische gruppe H mit zerfallender halbeinfacher Liealgebra und einer n-dimensionalen abelschen p-adische analytische gruppe Z ist. In Kapitel 3 zeigen wir folgenden Satz: Sei M ein endlich erzeugter Torsionmodul über der Iwasawaalgebra von G, welcher keine nichtrivialen pseudo-null-Untermoduln besitzt. Dann ist q(M), das Bild von M in der Quotientenkategorie Q, genau dann volltreu, wenn M als Modul über der Iwasawaalgebra von Z torsionsfrei ist. Hierbei bezeichne Q den Serre-Quotienten der Kategorie der Moduln über der Iwasawaalgebra von G nach der Serre-Unterkategorie der pseudo-null-Moduln. In Kapitel 4 zeigen wir folgenden Satz: Es bezeichne T die Kategorie, deren Objekte die endlich erzeugten Modulen über der Iwasawaalgebra von G sind, welche auch als Moduln über der Iwasawaalgebra von H endlich erzeugt sind. Seien M, N zwei Objekte von T. Wir nehmen an, dass M, N keine nichttrivialen pseudo-null-Untermoduln besitzen und q(M) in Q volltreu ist. Dann gilt: Ist [M]=[N] in der Grothendieckgruppe von Q, so ist das Bild von N ebenfalls volltreu. In Kapitel 5 zeugen wir folgenden Satz: Sei G eine beliebige p-adische analytische Gruppe, welche keine Element der Ordung p besitzt. Dann sind die Grothendieckgruppen der Algebra stetiger Distributionen und der Algebra beschränkter Distributionen isomorph zu c Kopien des Rings der ganzen Zahlen, wobei c die Anzahl der p-regulären Konjugationsklassen des Quotienten von G nach einer offenen uniformen pro-p-Untergruppe H bezeichnet. / Let G be a compact p-adic analytic group with no element of order p such that it is the direct sum of a torsion free compact p-adic analytic group H whose Lie algebra is split semisimple and an abelian p-adic analytic group Z of dimension n. In chapter 3, we show that if M is a finitely generated torsion module over the Iwasawa algebra of G with no non-zero pseudo-null submodule, then the image q(M) of M via the quotient functor q is completely faithful if and only if M is torsion free over the Iwasawa algebra of Z. Here the quotient functor q is the unique functor from the category of modules over the Iwasawa algebra of G to the quotient category with respect to the Serre subcategory of pseudo-null modules. In chapter 4, we show the following: Let M, N be two finitely generated modules over the Iwasawa algebra of G such that they are objects of the category Q of those finitely generated modules over the Iwasaw algebra of G which are also finitely generated as modules over the Iwasawa algebra of H. Assume that q(M) is completely faithful and [M] =[N] in the Grothendieck group of Q. Then q(N) is also completely faithful. In chapter 6, we show that if G is any compact p-adic analytic group with no element of order p, then the Grothendieck groups of the algebras of continuous distributions and bounded distributions are isomorphic to c copies of the ring of integers where c denotes the number of p-regular conjugacy classes in the quotient group of G with an open normal uniform pro-p subgroup H of G.

Page generated in 0.042 seconds