• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 7
  • 4
  • 2
  • 1
  • Tagged with
  • 40
  • 40
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

On flux vacua, SU(n)-structures and generalised complex geometry / Sur des vides à flux, des SU(n)-structures et de la géométrie complexe généralisée

Prins, Daniël 25 September 2015 (has links)
Pour connecter la théorie des cordes à la physique observable, il est essentiel de comprendre des vides supersymmétriques à flux non triviaux. Dans cette thèse, ils sont étudiés en deux cadres mathématiques : les SU(n)-structures et la géométrie complexe généralisée. Les variétés équipées de SU(n)-structures sont des généralisations de variétés de Calabi-Yau. La géométrie complexe généralisée est un cadre géométrique qui regroupe les géométries complexe et symplectique. On donne des classes de vide à flux de supergravité de type II et de théorie-M sur des variétés équipées de SU(4)-structures. Des vides explicites sont donnés sur l'espace de Stenzel, un Calabi-Yau non-compact. Ensuite, sur cette variété, des familles de SU(4)-structures sont construites. À l'aide de celles-ci, on trouve des vides à flux sur des variétés non-symplectiques. Il est démontré que les conditions permettant une supersymétrie à d = 2, N = (2,0) de type IIB peut être reformulées dans le langage de la géométrie complexe généralisée, partiellement interprétables en termes de conditions d'intégrabilité de structures presque complexes généralisées. Enfin, la théorie de type II euclidienne est examinée sur des variétés équipées de SU(5)-structures, donnant des équations généralisées qui sont nécessaires mais pas suffisantes pour satisfaire les équations de supersymétrie. Des classes de solutions explicites sont également donnés / Understanding supersymmetric flux vacua is essential in order to connect string theory to observable physics. In this thesis, flux vacua are studied by making use of two mathematical frameworks: SU(n)-structures and generalised complex geometry. Manifolds with $SU(n)$ structure are generalisations of Calabi-Yau manifolds. Generalised complex geometry is a geometrical framework that simultaneously generalises complex and symplectic geometry. Classes of flux vacua of type II supergravity and M-theory are given on manifolds with SU(4) structure. The N = (1,1) type IIA vacua uplift to N=1 M-theory vacua, with four-flux that need not be (2,2) and primitive. Explicit vacua are given on Stenzel space, a non-compact Calabi Yau. These are then generalised by constructing families of non-CY SU(4)-structures to find vacua on non-symplectic SU(4)-deformed Stenzel spaces. It is shown that the supersymmetry conditions for N = (2,0) type IIB can be rephrased in the language of generalised complex geometry, partially in terms of integrability conditions of generalised almost complex structures. This rephrasing for d=2 goes beyond the calibration equations, in contrast to d=4,6 where the calibration equations are equivalent to supersymmetry. Finally, Euclidean type II theory is examined on SU(5)-structure manifolds, where generalised equations are found which are necessary but not sufficient to satisfy the supersymmetry equations. Explicit classes of solutions are provided here as well. Contact with Lorentzian physics can be made by uplifting such solutions to d=1, N = 1 M-theory
22

A Conforming to Interface Structured Adaptive Mesh Refinement for Modeling Complex Morphologies

Anand Nagarajan, . January 2019 (has links)
No description available.
23

On the Hermitian Geometry of k-Gauduchon Orthogonal Complex Structures

Khan, Gabriel Jamil Hart 24 September 2018 (has links)
No description available.
24

Tensionless Strings and Supersymmetric Sigma Models : Aspects of the Target Space Geometry

Bredthauer, Andreas January 2006 (has links)
<p>In this thesis, two aspects of string theory are discussed, tensionless strings and supersymmetric sigma models.</p><p>The equivalent to a massless particle in string theory is a tensionless string. Even almost 30 years after it was first mentioned, it is still quite poorly understood. We discuss how tensionless strings give rise to exact solutions to supergravity and solve closed tensionless string theory in the ten dimensional maximally supersymmetric plane wave background, a contraction of AdS(5)xS(5) where tensionless strings are of great interest due to their proposed relation to higher spin gauge theory via the AdS/CFT correspondence.</p><p>For a sigma model, the amount of supersymmetry on its worldsheet restricts the geometry of the target space. For N=(2,2) supersymmetry, for example, the target space has to be bi-hermitian. Recently, with generalized complex geometry, a new mathematical framework was developed that is especially suited to discuss the target space geometry of sigma models in a Hamiltonian formulation. Bi-hermitian geometry is so-called generalized Kähler geometry but the relation is involved. We discuss various amounts of supersymmetry in phase space and show that this relation can be established by considering the equivalence between the Hamilton and Lagrange formulation of the sigma model. In the study of generalized supersymmetric sigma models, we find objects that favor a geometrical interpretation beyond generalized complex geometry.</p>
25

Strings as Sigma Models and in the Tensionless Limit

Persson, Jonas January 2007 (has links)
<p>This thesis considers two different aspects of string theory, the tensionless limit of the string and supersymmetric sigma models with extended supersymmetry. First, the tensionless limit is used to find a IIB supergravity background generated by a tensionless string. The background has the characteristics of a gravitational shock-wave. Then, the quantization of the tensionless string in a pp-wave background is performed and the result is found to agree with what is obtained by taking a tensionless limit directly in the quantized theory of the tensile string. Hence, in the pp-wave background the tensionless limit commutes with quantization. Next, supersymmetric sigma models and the relation between extended world-sheet supersymmetry and target space geometry is studied. The sigma model with N=(2,2) extended supersymmetry is considered and the requirement on the target space to have a bi-Hermitean geometry is reviewed. The Hamiltonian formulation of the model is constructed and the target space is shown to have generalized Kähler geometry. The equivalence between bi-Hermitean geometry and generalized Kähler follows, in this context, from the equivalence between the Lagrangian- and Hamiltonian formulation of the sigma model. Then, T-duality in the Hamiltonian formulation of the sigma model is studied and the explicit T-duality transformation is constructed. It is shown that the transformation is a symplectomorphism, i.e. a generalization of a canonical transformation. Under certain assumptions, the amount of extended supersymmetry present in the sigma model is shown to be preserved under the T-duality transformation. Next, extended supersymmetry in a first order formulation of the sigma model is studied. By requiring N=(2,2) extended world-sheet supersymmetry an intriguing geometrical structure arises and in a special case generalized complex geometry is found to be contained in the new framework.</p>
26

Tensionless Strings and Supersymmetric Sigma Models : Aspects of the Target Space Geometry

Bredthauer, Andreas January 2006 (has links)
In this thesis, two aspects of string theory are discussed, tensionless strings and supersymmetric sigma models. The equivalent to a massless particle in string theory is a tensionless string. Even almost 30 years after it was first mentioned, it is still quite poorly understood. We discuss how tensionless strings give rise to exact solutions to supergravity and solve closed tensionless string theory in the ten dimensional maximally supersymmetric plane wave background, a contraction of AdS(5)xS(5) where tensionless strings are of great interest due to their proposed relation to higher spin gauge theory via the AdS/CFT correspondence. For a sigma model, the amount of supersymmetry on its worldsheet restricts the geometry of the target space. For N=(2,2) supersymmetry, for example, the target space has to be bi-hermitian. Recently, with generalized complex geometry, a new mathematical framework was developed that is especially suited to discuss the target space geometry of sigma models in a Hamiltonian formulation. Bi-hermitian geometry is so-called generalized Kähler geometry but the relation is involved. We discuss various amounts of supersymmetry in phase space and show that this relation can be established by considering the equivalence between the Hamilton and Lagrange formulation of the sigma model. In the study of generalized supersymmetric sigma models, we find objects that favor a geometrical interpretation beyond generalized complex geometry.
27

Strings as Sigma Models and in the Tensionless Limit

Persson, Jonas January 2007 (has links)
This thesis considers two different aspects of string theory, the tensionless limit of the string and supersymmetric sigma models with extended supersymmetry. First, the tensionless limit is used to find a IIB supergravity background generated by a tensionless string. The background has the characteristics of a gravitational shock-wave. Then, the quantization of the tensionless string in a pp-wave background is performed and the result is found to agree with what is obtained by taking a tensionless limit directly in the quantized theory of the tensile string. Hence, in the pp-wave background the tensionless limit commutes with quantization. Next, supersymmetric sigma models and the relation between extended world-sheet supersymmetry and target space geometry is studied. The sigma model with N=(2,2) extended supersymmetry is considered and the requirement on the target space to have a bi-Hermitean geometry is reviewed. The Hamiltonian formulation of the model is constructed and the target space is shown to have generalized Kähler geometry. The equivalence between bi-Hermitean geometry and generalized Kähler follows, in this context, from the equivalence between the Lagrangian- and Hamiltonian formulation of the sigma model. Then, T-duality in the Hamiltonian formulation of the sigma model is studied and the explicit T-duality transformation is constructed. It is shown that the transformation is a symplectomorphism, i.e. a generalization of a canonical transformation. Under certain assumptions, the amount of extended supersymmetry present in the sigma model is shown to be preserved under the T-duality transformation. Next, extended supersymmetry in a first order formulation of the sigma model is studied. By requiring N=(2,2) extended world-sheet supersymmetry an intriguing geometrical structure arises and in a special case generalized complex geometry is found to be contained in the new framework.
28

Géométrie des variétés rationnellement connexes / Geometry of rationally connected varieties

Ou, Wenhao 07 December 2015 (has links)
Dans cette thèse, on étudie plusieurs sujets sur la géométrie des variétés rationnellement connexes. Une variété complexe est dite rationnellement connexe si par deux points généraux, il passe une courbe rationnelle. Le premier sujet qu'on étudie est la base d'une fibration lagrangienne d'une variété projective irréductible symplectique de dimension quatre. On prouve qu'il y a aux plus deux possibilités pour la base. Dans la deuxième partie, on classifie certain type de variétés de Fano. Enfin, on étudie les structures des variétés rationnellement connexes singulières qui portent des pluri-formes non nulles / In this dissertation, we study several subjects on the geometry of rationally connected varieties. A complex variety is called rationally connected if for two general points, there is a rational curve passing through them. The first subject we study is the base of a Lagrangian fibration of a projective irreducible symplectic fourfold. We prove that there are at most two possibilities for the base. In the second part, we classify certain type of Fano varieties. In the end, we study the structures of singular rationally connected varieties which carry non-zero pluri-forms
29

Géométrie des variétés de Fano singulières et des fibrés projectifs sur une courbe / Geometry of singular Fano varieties and projective vector bundles over curves

Montero Silva, Pedro Pablo 11 October 2017 (has links)
Cette thèse est consacrée à la géométrie des variétés de Fano et des fibrés projectifs sur une courbe projective lisse.Dans la première partie on étudie la géométrie des variétés de Fano pas trop singulières admettant un diviseur premier de nombre de Picard 1. En étudiant les contractions associées aux rayons extrémaux dans le cône de Mori de ces variétés nous fournissons un théorème de structure en dimension 3 pour les variétés dont le nombre de Picard est maximal. Ensuite, nous traitons le cas des variétés toriques et nous étendons le théorème de structure aux variétés toriques de dimension supérieure à 3 dont le nombre de Picard est maximal. Enfin, nous traitons les relèvements des contractions extrémales aux espaces de revêtement universels en codimension 1.Dans la deuxième partie on étudie les corps de Newton-Okounkov sur les fibrés projectifs sur une courbe projective lisse. En nous inspirant des estimations de Wolfe utilisées pour calculer la fonction de volume sur ces variétés, nous calculons tous les corps de Newton-Okounkov par rapport aux drapeaux linéaires et nous étudions comment ces corps dépendent de la décomposition en cellules de Schubert par rapport aux drapeaux linéaires compatibles avec la filtration de Harder-Narasimhan du fibré. De plus, nous caractérisons les fibrés vectoriels semi-stables sur une courbe projective lisse à l'aide des corps de Newton-Okounkov. / This thesis is devoted to the geometry of Fano varieties and projective vector bundles over a smooth projective curve.In the first part we study the geometry of mildly singular Fano varieties on which there is a prime divisor of Picard number 1. By studying the contractions associated to extremal rays in the Mori cone of these varieties, we provide a structure theorem in dimension 3 for varieties with maximal Picard number. Afterwards, we address the case of toric varieties and we extend the structure theorem to toric varieties of dimension greater than 3 and with maximal Picard number. Finally, we treat the lifting of extremal contractions to universal covering spaces in codimension 1.In the second part we study Newton-Okounkov bodies on projective vector bundles over a smooth projective curve. Inspired by Wolfe's estimates used to compute the volume function on these varieties, we compute all Newton-Okounkov bodies with respect to linear flags and we study how these bodies depend on the Schubert cell decomposition with respect to linear flags which are compatible with the Harder-Narasimhan filtration of the bundle. Moreover, we characterize semi-stable vector bundles over smooth projective curves via Newton-Okounkov bodies.
30

Caractérisation de matériaux composites sur structures à géométries complexes par problème inverse vibratoire local / Characterization of composite materials on structures with complex geometries using an inverse vibratory method

Bottois, Paul 08 November 2019 (has links)
Les matériaux composites présentent une forte rigidité pour une faible masse. Les méthodes courantes pour représenter le comportement vibratoire de ces matériaux ne sont souvent pas adaptées, car elles ne caractérisent pas le matériau mis en forme. Or, les propriétés dynamiques de celui-ci peuvent varier lors de sa fabrication et peuvent être dépendante de l’'espace. De nouvelles approches sont donc nécessaires pour mieux appréhender ces phénomènes.L’'approche proposée dans cette thèse utilise une méthode inverse locale, inspirée fortement de la méthode RIFF (Résolution Inverse Fenêtrée Filtrée) pour l’'identification des propriétés de matériaux. Ces travaux proposent d’'étendre le champ d’'application de cette méthode à des structures composites ayant une géométrie complexe, en remplaçant l’'opérateur analytique par un opérateur Éléments Finis. Les matériaux composites sont alors considérés comme homogènes et leurs propriétés sont recherchées. Dans le cas d’'une géométrie complexe deux couples de paramètres sont identifiés : le module d’'Young homogénéisé de traction complexe et le module d’'Young homogénéisé de flexion complexe, résultant du couplage existant entre les mouvements longitudinaux et transverses. Les méthodes inverses étant connues pour être sensibles aux incertitudes de mesure, une approche probabiliste est présentée pour régulariser le bruit de mesure. La régularisation est alors automatique et ne nécessite pas de paramètres à ajuster.L’'identification des paramètres structuraux, qui peut être globale ou locale, est présentée sur poutres droites, poutre courbes, plaques et coques. / Composite materials have high stiffness for a low mass. Common methods to represent the vibratory behavior of these materials are often not appropriate, as they do not characterize the material being shaped. However, the dynamic properties of the material can vary during its manufacture and can be dependent on space. New approaches are therefore needed to better understand these phenomena.The approach proposed in this thesis uses a local inverse method, strongly inspired by the FAT (Force Analysis Technique) for the identification of material properties. This work proposes to extend the scope of this method to composite structures with complex geometry, replacing the analytical operator with a Finite Element operator. Composite materials are then considered homogeneous and their properties are sought. In the case of a complex geometry two pairs of parameters are identified, the homogenized Young's modulus of complex traction and the homogenized Young's modulus of complex bending, resulting from the coupling between the longitudinal and transverse movements. As inverse methods are known to be sensitive to measurement uncertainties, a probabilistic approach is presented to regularize measurement noise. The regularization is then automatic and does not require any parameters to be adjusted.The identification of structural parameters, which can be global or local, is presented on straight beams, curved beams, plates and shells.

Page generated in 0.0721 seconds