• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation structurale des interactions moléculaires au sein du complexe de réplication du virus de la vaccine / Structural caracterisation of molecular interactions in vaccinia virus replication complex

Sele, Céleste 13 December 2011 (has links)
Le virus de la vaccine (VACV) est un grand virus à ADN, modèle du genre orthopoxvirus, et partage plus de 97% d'identité de séquence avec le virus de la variole (VARV), un pathogène humain majeur éradiqué en 1977 grâce au programme de vaccination mondial avec le VACV. Celle-ci ayant été stoppée dans les années 80, un pourcentage significatif de la population mondiale est aujourd'hui considérée comme immunologiquement naïf vis à vis du virus de la variole, ce qui fait de lui un agent bioterroriste potentiel. De plus, la vaccination implique un grand nombre de complications, particulièrement graves chez les personnes immunodéprimées ; et les antiviraux disponibles sont peu développés, ce qui souligne le besoin de nouvelles molécules. Le complexe de réplication apparait comme étant une cible privilégiée, de par son importance dans le cycle viral mais aussi par sa localisation cytoplasmique qui le rend plus accessible aux molécules antivirales. Nous nous sommes intéressés à 4 protéines essentielles de ce complexe : l'ADN polymérase E9, le facteur de processivité composé de la protéine A20 et de l'uracile ADN glycosylase D4 et l'hélicase-primase D5. Nous avons pu exprimer ces protéines de manière recombinante, seules ou en complexe ainsi que les caractériser biochimiquement et biophysiquement. Nous avons finalement abouti à une reconstruction strcuturale du complexe A20D4E9 à basse résolution grâce à la technique de SAXS, ce qui nous a permis de proposer le premier modèle structural de la fourche de réplication du virus de la vaccine. / Vaccinia virus (VACV) is a large DNA virus, prototypic virus of the orthopoxvirus genus, and shows over 97% amino acid sequence identity with the variola virus (VARV), a major human pathogene eradicated in 1977 thanks to the universal vaccination program with VACV. As this vaccination was halted in the 1980s, a significant percentage of the world population is now immunologically naïve, which makes the VARV a potent bioterrorist agent. Vaccination against smallpox may result in a variety of complications, particularly in immunologically depressed patients, and the available antiviral therapeutics are rare, which enhance the need of new molecules. The replication complex appears as an ideal target because of its importance in the viral cycle and its cytoplasmic localization, more accessible for the molecules. We have focused our study on 4 essential proteins of this complex: the DNA polymerase E9, the processivity factor composed by the A20 protein and the uracil DNA glycosylase D4 and the helicase-primase D5. We could express these recombinant proteins, alone and in complex, and characterize them biochemically and biophysically. Using the SAXS technic, we finally reached a low resolution model of the A20D4E9 complex which allow us to propose the first structural model of the vaccinia virus replication fork.
2

INTERET THERAPEUTIQUE DE LA PROTEINE A20 DES ORTHOPOXVIRUS COMME CIBLE PERTINENTE D'APTAMERES PEPTIDIQUES ET DE COMPOSES CHIMIQUES BLOQUANT SES INTERACTIONS ESSENTIELLES A L'INTERIEUR DU COMPLEXE DE REPLICATION VIRALE

Saccucci, Laurent 10 September 2009 (has links) (PDF)
La variole est l'un des pires fléaux qu'ait connu l'humanité jusqu'à son éradication en 1980. Il existe aujourd'hui une menace terroriste de réémergence du virus de la variole comme arme biologique. Le manque de moyens thérapeutiques, la faible immunité de la population mondiale depuis l'arrêt de la vaccination antivariolique et les complications post-vaccinales liées à l'utilisation du vaccin réplicatif historique ont conduit ces dernières années à une intensification des recherches pour lutter contre la variole et les autres virus du genre orthopoxvirus. En complément d'assurer la production d'un nouveau vaccin antivariolique répondant aux normes sanitaires actuelles, il est indispensable de développer des molécules antivirales efficaces aux modes d'actions différents, utilisables immédiatement en cas d'attaque terroriste et pour pallier les complications post-vaccinales. L'objectif du travail de thèse est d'explorer de nouvelles stratégies thérapeutiques en ciblant plus particulièrement la réplication du virus de la vaccine, utilisé comme modèle substitutif au virus de la variole. La première stratégie est l'utilisation d'aptamères peptidiques ciblant A20, une protéine centrale du complexe de réplication formant avec l'uracile ADN glycosylase D4 le facteur de processivité pour l'ADN polymérase virale. Ces peptides sont sélectionnés in vivo en double-hybride en levure pour interagir avec une cible protéique et potentiellement l'inhiber. Ainsi nous avons sélectionné un aptamère interagissant avec une région critique de la protéine cible A20 et capable d'inhiber significativement la réplication du virus de la vaccine en culture cellulaire. La seconde stratégie est l'utilisation d'un criblage haut débit de molécules chimiques pour leur capacité à rompre les interactions entre notre cible de choix A20 et deux de ses interacteurs connus, la protéine D4 et la primase/hélicase D5, par une approche basée sur l'utilisation de deux rapporteurs luciférase en levure. Nous avons démontré que deux molécules issues du criblage permettaient l'inhibition significative et spécifique de la réplication de plusieurs orthopoxvirus, in vitro. Ces travaux viennent compléter le faible arsenal thérapeutique disponible destiné à lutter contre les infections à orthopoxvirus.
3

In-depth characterization of the NS3:NS5 interaction within the West Nile virus replicase complex during positive strand RNA synthesis / Caractérisation détaillée de l’interaction entre NS3 et NS5 dans le complexe de réplication du virus du Nil occidental pendant la synthèse d’ARN de polarité positive

Brand, Carolin January 2017 (has links)
Les Flavivirus transmis par les moustiques comme le virus du Nil occidental, le virus de la dengue, le virus de la fièvre jaune, le virus de l’encéphalite japonaise et le virus Zika constituent des préoccupations croissantes de santé publique. Ils se sont répandus dans le monde au cours des dernières décennies, et les épidémies sont devenues plus fréquentes et plus sévères. Chaque année, des millions de personnes sont infectées et environ 50 000 patients décèdent d’infections à Flavivirus. Malgré les nombreux efforts de recherche, il n’y a actuellement aucun médicament antiviral spécifique disponible, et des nouvelles stratégies antivirales sont indispensables. Comprendre comment les Flavivirus fonctionnent au niveau moléculaire aidera à découvrir des nouvelles cibles pour l'intervention thérapeutique. Les Flavivirus ont un génome d'ARN simple brin de polarité positive qui code pour trois protéines structurales et huit protéines non structurales. Seules deux des huit protéines non structurales ont des activités enzymatiques. NS3 possède un domaine protéase et un domaine hélicase, et NS5 a un domaine méthyl- et guanylyltransférase et un domaine ARN polymérase ARN-dépendante. Ensemble, ils répliquent le génome viral. Ici, nous caractérisons l'interaction entre NS3 et NS5 dans le complexe de réplication du virus du Nil occidental pendant la synthèse d’ARN de polarité positive. Un modèle d'interaction comprenant NS3, NS5 et l’ARN viral a été développé basé sur des structures cristallines connues ainsi que des activités enzymatiques des deux protéines individuelles, et ce modèle a été soumis à des simulations de dynamique moléculaire. Les interactions potentielles entre les protéines NS3 et NS5 ont été identifiées. Les résidus impliqués dans ces interactions ont été mutés dans un réplicon du virus du Nil occidental et les effets de ces mutations sur la réplication virale ont été évalués. Une région particulière à la surface de la protéine NS3 a été identifiée comme étant cruciale pour la réplication virale, très probablement parce qu'elle interagit avec NS5. Cette région pourrait être une cible attrayante pour la recherche de composés qui pourraient interférer avec l'interaction entre NS3 et NS5 et donc posséder un potentiel antiviral intéressant. / Abstract : Mosquito-borne Flaviviruses like West Nile virus, Dengue virus, Yellow Fever virus, Japanese encephalitis virus, and Zika virus are increasing public health concerns. They have spread globally during the past decades, and outbreaks have recently become more frequent and more severe. Every year, millions of people are infected, and approximately 50,000 patients die from Flavivirus infections. Despite extensive research efforts, there are currently no specific antiviral drugs available, and new antiviral strategies are greatly needed. Understanding how Flaviviruses work on a molecular level will help in uncovering new points for therapeutic intervention. Flaviviruses have a single-stranded RNA genome of positive polarity that encodes three structural and eight non-structural proteins. Only two of the eight non-structural proteins have enzymatic activities. NS3 has an N-terminal protease domain and a C-terminal helicase domain, and NS5 has an N-terminal capping enzyme domain and a C-terminal RNA-dependent RNA polymerase domain. Together, they replicate the viral genome. Here we characterize the NS3:NS5 interaction within the West Nile virus RNA replicase complex during positive strand synthesis. An interaction model including NS3, NS5 and viral RNA was developed based on the known crystal structures as well as enzymatic activities of the two individual proteins, and this model was subjected to molecular dynamics simulations. Potential interactions between the NS3 and NS5 proteins were identified. Residues involved in these interactions were mutated in a West Nile virus replicon, and the effects of these mutations on viral replication were evaluated. One particular region on the surface of the NS3 protein was identified to be crucial for viral replication, most likely because it mediates the interaction with NS5. This region might be an attractive target for the search of compounds that could interfere with the NS3:NS5 interaction and therefore possess an interesting antiviral potential.
4

Caractérisation de l'implication de l'hélicase DHX9 (RHA) dans le cycle de multiplication du virus Chikungunya / Characterization of the involvement of the helicase DHX9 (RHA) in the multiplication cycle of the Chikungunya virus

Matkovic, Roy 20 September 2016 (has links)
Les virus sont des parasites intracellulaires obligatoires recrutant des cofacteurs cellulaires afin de détourner les différents processus biologiques leur permettant notamment de répliquer leur génome et de former d'autres particules virales. Si des cofacteurs cellulaires de la réplication du virus Semliki Forest ont été récemment identifiés, très peu d'études ont permis de révéler des partenaires de la réplication du proche Alphavirus Chikungunya (CHIKV). Nous avons découvert, au cours de cette étude, un recrutement d'Hélicases à domaine DExD/H au niveau de sites de réplication du CHIKV. Parmi elles, DHX9 ou RNA Helicase A (RHA), grâce à ses propriétés de liaison et de modulation de structures des ARNs ou de complexes de Ribonucléoprotéines, est impliquée dans diverses fonctions depuis la transcription, la traduction, la réplication de génomes et jusqu'à la production de particules infectieuses de nombreux virus. Dans le cas du virus Chikungunya, nous avons caractérisé une fonction provirale dans la traduction de protéines non-structurales et une fonction antivirale dans la réplication du génome. Cette double fonction opposée est manipulée par le CHIKV afin d'assurer une production de protéines non-structurales composant le complexe de réplication tout en maintenant sa réplication. Ces travaux révèlent un nouveau mécanisme de régulation de la traduction d'ARN génomique de CHIKV et apportent des éléments de compréhension dans la dynamique de passage du phénomène de traduction à l'étape de réplication du génome CHIKV. / Viruses are obligate intracellular parasites recruiting cellular cofactors to divert different biological processes enabling them to replicate their genome and to form other viral particles. If cellular cofactors of Semliki Forest virus replication have recently been identified, very few studies have revealed the replication partners of the very close Alphavirus Chikungunya (CHIKV). During this study, We have discovered recruitments of several DExD/H Box Helicases at the CHIKV replication sites. Among them, DHX9 or RNA Helicase A (RHA) through its RNA binding properties and in modulating RNA secondary structures or Ribonucleoproteins complexes, is involved in various functions from transcription, translation, replication of genomes and up to production of infectious particles of many viruses. In the case of Chikungunya virus, we have characterized a proviral function in the translation of non-structural proteins and an antiviral function in the genome replication. These opposite functions are manipulated by CHIKV to ensure production nonstructural proteins, components of the CHIKV replication complex while maintaining its replication. These works reveal a new translation regulation mechanism of CHIKV genomic RNA and bring some knowledge on the passage from the translation stage to the replication step of CHIKV genome.
5

Caractérisation de la protéine 140K impliquée dans l’adressage aux chloroplastes des complexes de réplication du virus de la mosaïque jaune du navet (TYMV) / Characterization of the 140K protein involved in targeting to the chloroplasts of the replication complexes of the Turnip Yellow mosaic virus (TYMV) replication complexes

Moriceau, Lucille 21 December 2015 (has links)
Le virus de la mosaïque jaune du navet (TYMV) possède un génome monopartite constitué d’ARN de polarité positive codant pour trois protéines, dont seule la polyprotéine 206K est indispensable à la réplication virale.Elle subit une maturation protéolytique, générant les protéines 140K et 66K, localisées au niveau de l’enveloppe des chloroplastes, siège de la réplication virale.Adressée aux chloroplastes, la protéine 140K y recrute la 66K et se comporte comme une protéine intégrale membranaire.Le domaine d’adressage aux chloroplastes (DAC) de la protéine 140K a été défini grâce à la transfection et à des protoplastes d’Arabidopsis thaliana par différentes constructions codantpour des versions délétées de la protéine fusionnées à l’EGFP, et à leur observation en microscopie confocale. Le DAC comprend deux hélices alpha amphipathiques dont la présence a été attestée par dichroïsme circulaire. Leur nécessité pour la localisation aux chloroplastes, l’association aux membranes et la réplication virale, a été étudiée. Différents patterns de distribution subcellulaire de la protéine 140K ont été observés. Ils sont corrélés au taux d’expression de la protéine. Sa dimérisation a également été démontrée.L’implication d’autres résidus du DAC dans la localisation subcellulaire, la dimérisation et la réplication virale, a également été recherchée. / Turnip yellow mosaic virus (TYMV) is a positive single-stranded RNA virus. Among the three ORFs encoded by the TYMV genome, 206K is the only protein required for viral replication. It is cleaved into 140K and 66K, which are both present at the chloroplast envelope membrane, where viral replication takes place.The 140K protein is targeted to chloroplasts, where it recruits 66K, and behaves as an integral membrane protein. The chloroplast targeting domain (DAC) of the 140K protein was defined using Arabidopsis thaliana protoplasts transfected by various constructs encoding deleted versions of 140Kfused to EGFP and subsequent confocal microscopy. The DAC comprises two amphipathic alpha helices, as confirmed by circular dichroism. Their involvement in chloroplast localisation and membrane association has been assessed, as well as their contribution to viral replication.We observed different subcellular distribution patterns of 140K protein, which correlate with the expression level of the protein. Its capability to dimerize has also been demonstrated.The involvement of other DAC residues in subcellular localisation, dimerization and viral replication has been studied.

Page generated in 0.1394 seconds