1 |
Numerical Simulation of Thermal Comfort and Contaminant Transport in Air Conditioned RoomsHo, Son Hong 08 November 2004 (has links)
Health care facilities, offices, as well as workshops and other commercial occupancies, require ventilation and air conditioning for thermal comfort and removal of contaminants and other pollutions. A good design of ventilation and air conditioning provides a healthy and comfortable environment for patients, workers, and visitors.
The increasing developments of computational fluid dynamics (CFD) in the recent years have opened the possibilities of low-cost yet effective method for improving HVAC systems in design phase, with less experiment required. This work presents numerical simulations of thermal comfort and contaminant removal for two typical working spaces where these factors are critical: a hospital operating room with various configurations of inlet and outlet arrangements, and an office with two cases of air distribution systems: underfloor and overhead, also with alternative cases. The 2-D simulation approach was employed. Temperature, relative humidity, contaminant concentration, thermal sensation, predicted mean vote (PMV), and contaminant removal factor were computed and used for assessing thermal comfort and contaminant removal characteristics of the office room and operating room. The result shows good agreements with experimental data taken from related literature.
|
2 |
Simulation and Validation of Two-Component Flow in a Void Recirculation SystemDaza, Oscar Eduardo 01 May 2011 (has links)
Nuclear power plants rely on the Emergency Core Cooling System (ECCS) to cool down the reactor core in case of an accident. Occasionally, air is entrained into the suction piping of ECCS causing voids that decrease pumping efficiency, and consequently damage the pumps. In an attempt to minimize the amount of voids entering the suction side of the pump in ECCS, a Void Recirculation System (VRS) experiment was conducted for a proof of concept purpose. While many studies have been oriented in studying two-component flow behavior in ECCS, none of them propose a solution to minimize air entrainment. As a consequence, there are no simulation models that use computational fluid dynamics to address gas entrainment solutions in ECCS. The objectives of this thesis are to (1) simulate and investigate two-component air-water flow in a VRS that minimizes the amount of air in piping systems, using RELAP5/MOD3 as the computational tool, and (2) to validate the numerical results with respect to experimental results and observations.
A one-dimensional model of the VRS was built in RELAP5, in which eight different scenarios (replicating those from the VRS experiment) were simulated for a period of 150 seconds. Four Froude numbers of 0.8, 1.0, 1.3 and 1.6 were evaluated in two different pipe configurations, and the experimental data obtained from the VRS experiment was used to validate the numerical results obtained from these simulations. It was concluded that air recirculation occurs indefinitely throughout the entire 150 seconds of the simulation for Froude numbers up to 1.3; while for a Froude number of 1.6, air recirculation occurs for approximately 100 seconds and ceases after 125 seconds of the simulation. An average air reduction effectiveness of 90% was found for all simulation scenarios. The VRS model was successfully validated and can be used to investigate the effects of air entrainment in suction piping.
|
Page generated in 0.094 seconds