• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 695
  • 194
  • 151
  • 98
  • 27
  • 17
  • 15
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • Tagged with
  • 1614
  • 1614
  • 290
  • 206
  • 186
  • 180
  • 175
  • 138
  • 135
  • 132
  • 125
  • 122
  • 119
  • 119
  • 117
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1281

Multi-frequency Ultrasound Directed Self-assembly

Presley, Christopher Tre 29 September 2023 (has links)
Ultrasound directed self-assembly (DSA) relies on the acoustic radiation force associated with a standing ultrasound wave to organize particles dispersed in a fluid medium into specific patterns. State-of-the-art ultrasound DSA methods can only organize particles into (quasi-)periodic patterns, limited by the use of single-frequency ultrasound wave fields. Acoustic holography and acoustic waveguides provide alternatives to assembling complex patterns of particles, but generally provide low spatial accuracy and are not re-configurable because they require custom hardware for each specific pattern of particles, which is impractical. We introduce multi-frequency ultrasound wave fields to organize particles in non-periodic patterns. We theoretically derive and experimentally validate a solution methodology to determine the operating parameters (frequency, amplitude, phase) of any number and spatial arrangement of ultrasound transducers, required to assemble spherical particles dispersed in an inviscid fluid medium into any specific two-dimensional pattern. The results show that multi-frequency ultrasound DSA enables the assembly of complex, non-periodic patterns of particles with substantially fewer ultrasound transducers than single-frequency ultrasound DSA, and without incurring a penalty in terms of accuracy. The results of this work fundamentally transform the state-of-the-art knowledge of ultrasound DSA. Multi-frequency ultrasound wave fields enable a near-unlimited complexity of patterns of particles that can be assembled, increasing the relevance of the technology to practical implementation in engineering applications such as manufacturing of engineered composite materials that derive their properties from the spatial organization of the filler in the matrix material. Although this work focuses specifically on ultrasound wave fields, the theoretical model is valid for all wave phenomena. / Master of Science / Ultrasound directed self-assembly (DSA) is the process where particles dispersed in a fluid medium assemble into specific patterns due to their interactions with a sound wave and/or other particles. Current ultrasound DSA methods use a single-frequency ultrasound wave to assemble particles into specific patterns, which creates repeating patterns within the fluid medium. Other methods of assembling particles that allow for more complex, non-repeating patterns generally provide low spatial accuracy and do not allow dynamically changing the pattern as they require custom hardware for each specific pattern of particles, rendering these methods impractical. We use many ultrasound waves each with a different frequency to organize particles into complex, non-repeating patterns, which we call multi-frequency ultrasound DSA. We theoretically derive and experimentally validate a method that allows us to assemble any specific two-dimensional pattern of particles using multi-frequency ultrasound DSA. The results show that multi-frequency ultrasound DSA enables the assembly of complex, non-repeating patterns of particles with substantially resources than single-frequency ultrasound DSA, and without incurring a penalty in terms of accuracy. Multi-frequency ultrasound DSA enables a near-unlimited complexity of patterns of particles that can be assembled, increasing the relevance of the technology to practical implementation in engineering applications.
1282

Processing-Structure-Property Relationships of Spark Plasma Sintered Boron Carbide and Titanium Diboride Ceramic Composites

Rubink, William S. 05 1900 (has links)
The aim of this study was to understand the processing – structure – property relationships in spark plasma sintered (SPS) boron carbide (B4C) and B4C-titanium diboride (TiB2) ceramic composites. SPS allowed for consolidation of both B4C and B4C-TiB2 composites without sintering additives, residual phases, e.g., graphite, and excessive grain growth due to long sintering times. A selection of composite compositions in 20% TiB2 feedstock powder increments from 0% to 100%, was sintered at 1900°C for 25 minutes hold time. A homogeneous B4C-TiB2 composite microstructure was determined with excellent distribution of TiB2 phase, while achieving ~99.5% theoretical density. An optimum B4C-23 vol.% TiB2 composite composition with low density of ~3.0 g/cm3 was determined that exhibited ~30-35% increase in hardness, fracture toughness, and flexural bend strength compared to commercial armor-grade B4C. This is a result of a) no residual graphitic carbon in the composites, b) interfacial microcrack toughening due to thermal expansion coefficient differences placing the B4C matrix in compression and TiB2 phase in tension, and c) TiB2 phase aids in crack deflection thereby increasing the amount of intergranular fracture. Collectively, the addition of TiB2 serves as a strengthening and toughening agent, and SPS shows promise for the manufacture of hybrid ceramic composites.
1283

Design Principles for Hybrid Composite Structures with Continuous Fiber Tow-Based Preforms

Justin D Miller (14295713) 06 February 2023 (has links)
<p>Demand for lightweight, cost-effective, structural components is driving the development of continuous fiber thermoplastic tow preforms, also known as 3D-tow or tow reinforcements, to add material performance to hybrid-molded structures as an alternative to metal components. Tow reinforcements offer the performance advantages of continuous fiber composites within molded structures. The tow reinforcements also feature more tailorability of performance compared to fabric or organo-sheet reinforced hybrid-molded structures, improving their potential for design optimization. However, the added complexity of 3D-tow reinforcement structure requires the development of unique design principles and computer aided engineering (CAE) methodologies to effectively design components which meet manufacturing and performance requirements. </p> <p><br></p> <p>A systematic evaluation of design considerations was performed comparing parts manufactured with various design features, configurations, and materials. Choosing the structural profile and balance of material properties was shown to be an important component of achieving the desired performance especially where the tow reinforcement must work in conjunction with the overmolding material to provide structural performance. </p> <p><br></p> <p>By experimentally testing representative structures with features found on automobile components and molded sports equipment, performance was evaluated for a range of material combinations and reinforcement content. Tow reinforcements were made from continuous glass or carbon fiber reinforced PA6 prepreg tape and injection overmolded with unfilled or glass fiber filled PA6 adding a shear web and rib structures. Tow reinforcement significantly reduced warpage, and in tensile loading, demonstrated potential for 340\% strength increase over parts without tow. However, three-point bend performance was dominated by the overmolding material. High strain to break overmolding materials are recommended to avoid premature overmolding material cracking. </p> <p><br></p> <p>Tensile performance of tow reinforced structures is not accurately captured by conventional modeling processes. When wrapped around load introduction points, the fibers of a thick tow traverse a shorter distance at the inner radius than the outer radius leading to waviness on the inner region of each wrap. The Hsaio and Daniel model was used to predict local elastic properties of the wavy fiber composite and spatially varying material properties were applied to 3D finite element models of a suspension link. Neglecting fiber waviness overpredicted experimental tensile stiffness and strength by 36\% and 33\% respectively while modeling waviness overpredicted stiffness and strength by only 9\% and 14\% respectively. Tow wrap configuration, waviness propagation, and material parameters have significant effect on tensile performance while the tow has little effect on compressive performance.</p> <p><br></p> <p>In addition to fiber waviness, tow bundles also spread to reconcile path length differences. A method for accounting for tow spread orientations was developed and combined with fiber waviness modeling techniques. The effects of simulating the resulting fiber orientations and effective elastic properties was used to model representative beams in tension and bending load cases and compared to previous experimental results. Accounting for fiber waviness in tension demonstrated greatly improved part stiffness predictions. Spread tow bundles improved predicted strength and stiffness over simulations where tow was constrained to a uniform cross section. Increased tow reinforcement increased bending stiffness, but failure behavior was significantly influenced by the overmolding material.  </p> <p><br></p> <p>The studies in this work identified key performance attributes of 3D-tow reinforced hybrid composite structures. Design principles and modeling techniques were developed in this work, providing improved performance predictions which brings the technology closer to widespread adoption. </p>
1284

Diseño del parachoque de mc jute/epoxi, kenaf/epoxi y sisal/epoxi para reducir los esfuerzos ante un impacto frontal en vehículos

Gamarra Zurita, Jose Luis January 2024 (has links)
En la actualidad se observa que el comportamiento de los parachoques de los vehículos sufre fisuras y aumentan los esfuerzos, ya que estos son elaborados con plásticos los cuales tienen muy baja resistencia, de tal forma que cuando sufren un impacto frontal, el vehículo termina muy afectado poniendo en riesgo la vida de las personas. Por ello, surgieron los parachoques con materiales compuestos los cuales tienen mayor resistencia que los plásticos y cercana a los metales. Por esta razón el objetivo de este trabajo es modelar y analizar un parachoques con Materiales Compuestos de Jute/Epoxi, Kenaf/Epoxi y Sisal/Epoxi utilizando las ecuaciones de la Energía Cinética, el Teorema de Cantidad de Movimiento y la Energía de Deformación, para así calcular la energía interna que se genera a la hora del impacto frontal, y realizar una comparación de los tres MC bajo la normativa GB17354-1998 y la directiva 96/79/CE del Parlamento Europeo. Además, se realizó la simulación de choque frontal del parachoques con los tres Materiales Compuestos (Jute/Epoxi, Kenaf/Epoxi y Sisal/Epoxi) propuestos en esta tesis, para así, evaluar los Esfuerzos, Deformaciones, Desplazamientos y el Factor de Seguridad mediante gráficos, utilizando el software SolidWorks. Y resultado de ello se obtuvo que el Material Compuesto de Sisal/Epoxi es el más Resistente y Seguro con respecto a los dos Materiales Compuesto (Jute/Epoxi y Kenaf/Epoxi).
1285

Mechanical Design, Analysis, and Manufacturing of Wind Tunnel Model and Support Structure / Mekanisk design, analys och tillverkning av vindtunnelmodell och stödstruktur

Penela Guerrero, Luis Alfonso January 2022 (has links)
The use of wind tunnel models for aerodynamic research is nowadays indispensable to aviation progress in the last years as aircrafts have become more complex. Wind tunnel model design and manufacturing has adopted many different processes and materials such as the use of a five-axis CNC; making this process a relatively long and expensive one. Composite materials offer a good trade-off between ease and cost of manufacturing compared to the more traditional methods, especially for in-house-built prototypes. This volume covers the different phases from design to manufacturing of a wind tunnel model for the MK18 conceptual blended wing-body UAV designed by KTH Green Raven Project students.The model is a down-scaled 1.5 meter span version with a belly-mounted two-strut support. The main structural requirements for the model are to withstand the aerodynamic loads obtained via CFD simulations. A mechanical interface for the support structure connection was designed. Carbon fiber reinforcement with an epoxy resin matrix was selected as the constituents for the airframe skins. A finite element model of the design was developed by using Abaqus to verify the overall structural behavior and stability. The manufacturing strategy of the airframe skins involved producing lightweight fiberglass molds out of CNC milled MDF male patterns and using vacuum infusion process to obtain the final carbon fiber parts. The internal structure members were manufactured out of different materials and processes from water-jet cutting of aluminum profiles to 3D-printed plastic components. The FEA study results showed that the model withstands the maximum loads with a high safety factor and a wing-tip deflection of less than 2\% of half the wingspan. The manufacturing of the molds turned out to be longer and more complicated than expected, but with overall good results. The composite skins came out with good mechanical and surface quality. The total weight of the model resulted in approximately 4.5 kg. Pressure taps were positioned and installed on the model skins. Their respective tubes routed in CAD to visualize the networking for manufacturing. This ensured proper placement to balance ease of installation with meaningful data collection. / Användningen av vindtunnelmodeller för aerodynamisk forskning är idag oumbärlig för flygets framsteg eftersom flygplan de senaste åren har blivit mer komplexa. Vindtunnelmodelldesign och konstruktion har använder många olika tillverkningsmetoder och material såsom femaxlig CNC; vilket gör processen relativt långsam och dyr. Kompositmaterial ger en bra avvägning mellan enkelhet och tillverkningskostnad jämfört med de mer traditionella metoderna, särskilt för egenbyggda prototyper. Denna rapport behandlar faserna från design till tillverkning av en vindtunnelmodell för en konceptuell blended wing-body UAV, MK18, konstruerad av KTH Green Raven Project­studenter. Modellen är en nedskalad version med 1,5 meter spännvidd som monteras på ett bukmonterat, tvådelat stöd. De viktigaste kraven på modellen är att kunna motstå de aerodynamiska belastningarna som beräknats via CFD­simuleringar. Den interna strukturen i modellen utformades för att integrera anslutningen med stödstrukturen. Kolfiber tillsammans med en epoxihartsmatris valdes som beståndsdelar för flygplanets skal. En finit elementmodell av designen utvecklades med hjälp av Abaqus FEA för att verifiera det övergripande strukturella beteendet och stabiliteten. Tillverkningsstrategin för flygplansskalet innebar att man tillverkade lätta glasfiberformar på CNC­frästa MDF­hanformar och använde en vakuuminfusionsprocess (VIP) för att erhålla de slutliga kolfiberdelarna. De inre strukturdelarna tillverkades av olika material och processer från bearbetning av aluminiumprofiler till 3D­utskrivna plastkomponenter. FEA­studieresultaten visade att modellen tål de maximala belastningarna med en hög säkerhetsfaktor och uppvisar en utböjning vid vingspetsarna på mindre än 2% av halva spännvidden. Tillverkningen av formarna visade sig ta längre tid och vara mer komplicerad än väntat, men gav övergripande goda resultat. Kompositskalet visade sig ha god mekanisk ytskvalitet. Modellens totala vikt blev under 5 kg. Hål för tryckmätning placerades också på modellens skal och rören drogs i en CADmodell för att visualisera nätverket för tillverkning. Detta säkerställde korrekt placering för att balansera enkelhet i installationen med meningsfull datainsamling.
1286

Prediction of Elastic Properties of a Carbon Nanotube Reinforced Fiber Polymeric Composite Material Using Cohesive Zone Modeling

Kulkarni, Mandar Madhukar 17 April 2009 (has links)
No description available.
1287

Diseño de revestimiento de carrocería frigorífica compuesto por fibra de poliuretano para aumentar el rendimiento del ciclo de refrigeración

Zevallos Diez, Jean Kevin January 2023 (has links)
Con la industrialización de alimentos perecederos, se ha visto necesario su transporte tanto a la misma fábrica de procesamiento como a los diferentes mercados existentes, para lo cual se utiliza el camión frigorífico. Por otro lado, estos alimentos deben conservarse a una temperatura, tal que, los mantenga frescos y evite su caducidad prematura, mientras son transportados. Actualmente, los camiones que no cuentan con un revestimiento de un material que evite la transferencia de calor entre las paredes de la carrocería frigorífica hacia el medio ambiente, tienden a requerir más tiempo para llegar a su temperatura ideal de conservación, con lo cual se reduce la eficiencia en consumo energético. Por esta razón, el objetivo de este proyecto de investigación es diseñar y simular la carrocería frigorífica con revestimiento utilizando un compuesto de fibra de vidrio-c/resina epoxy para reducir la transferencia de calor en la misma, cumpliendo con la resolución Ministerial No 1272011- PRODUCE. Se utilizará la matriz morfológica para el diseño de la carrocería frigorífica, las ecuaciones analíticas para evaluar la transferencia de calor y el software SolidWorks para la simulación térmica. / With the industrialization of perishable foods, it has become necessary to transport them both to the same processing factory and to the different existing markets, for which the refrigerated truck is used. On the other hand, these foods must be kept at a temperature that keeps them fresh and prevents their premature expiration while they are being transported. Currently, trucks that do not have a coating of a material that prevents heat transfer between the walls of the refrigerated body to the environment, tend to require more time to reach their ideal storage temperature, which reduces efficiency in energy consumption. For this reason, the objective of this research project is to design and simulate the refrigerated body with coating using a fiberglass-c/epoxy resin compound to reduce heat transfer in it, complying with Ministerial Resolution No 127- 2011- PRODUCE. The morphological matrix will be used for the design of the refrigerated body, the analytical equations to evaluate the heat transfer and the SolidWorks software for the thermal simulation.
1288

Análisis del comportamiento mecánico en adoquines de concreto f’c = 420 kg/cm2 adicionando nanoplaquetas de grafeno y aserrín para pavimento articulado de alto tránsito

Llatas Rafael, Josue Paul January 2024 (has links)
El presente proyecto de investigación consiste en la adición de dos sustancias tales como la nanoplaqueta de grafeno (NPG) y aserrín al concreto para la producción de adoquines de alto tránsito para luego verificar su resistencia a compresión, resistencia a la flexión y resistencia al desgaste por abrasión. Se elaboraron 135 adoquines de concreto para una resistencia de f’c = 420 kg/cm2. Se formaron 4 grupos de 27 adoquines con diferentes combinaciones de 0.05% NPG - 1.0% A, 0.05% NPG - 1.5% A, 0.10% NPG - 1.0% A, y 0.10% NPG - 1.5% A; las cuales estas sustancias serán sometidas primero a análisis previos tales como el análisis químico del aserrín y la dispersión de la nanoplaqueta de grafeno para posteriormente adicionarlos a la mezcla. Los resultados mostraron una alta resistencia en la combinación de 0.05% NPG - 1.0% A y 0.05% NPG - 1.5% A, son superiores al adoquín patrón en 9.58% y 3.73% respectivamente. Con respecto a la resistencia a la flexión el que presento mejores resultados es la combinación de 0.05% NPG - 1.5% A, cumpliendo con la norma. En la prueba de resistencia al desgaste por abrasión es variable debido a diversos factores como el agregado, las adiciones y/o los agrietamientos de la superficie del adoquín. / The present research project consists of the addition of two substances such as graphene nanoplatelet (NPG) and sawdust to concrete for the manufacture of high traffic pavers to subsequently verify their resistance to compression, bending and abrasive wear. A total of 135 concrete pavers with a strength of f'c = 420 kg/cm2 were manufactured. Four groups of 27 pavers were formed with different combinations of 0.05% NPG - 1.0% A, 0.05% NPG - 1.5% A, 0.10% NPG - 1.0% A, and 0.10% NPG - 1.5% A; these substances were first subjected to preliminary analyses such as chemical analysis of sawdust and dispersion of graphene nanoplatelet and then added to the mix. The results showed high strength in the combination of 0.05% NPG - 1.0% A and 0.05% NPG - 1.5% A, higher than that of the standard paver by 9.58% and 3.73%, respectively. In terms of flexural strength, the best results were obtained with the 0.05% NPG - 1.5% A combination, which complies with the standard. In the abrasion wear resistance test, it is variable due to various factors such as aggregate, additions and/or cracking of the paver surface.
1289

Experiment Management for the Problem Solving Environment WBCSim

Shu, Jiang 31 August 2009 (has links)
A problem solving environment (PSE) is a computational system that provides a complete and convenient set of high level tools for solving problems from a specific domain. This thesis takes an in-depth look at the experiment management aspect of PSEs, which can be divided into three levels: 1) data management, 2) change management, and 3) execution management. At the data management level, anything related to an experiment (computer simulation) should be stored and documented. A database management system can be used to store the simulation runs for a PSE. Then various high level interfaces can be provided to allow users to save, retrieve, search, and compare these simulation runs. At the change management level, a scientist should only focus on how to solve a problem in the experiment domain. Aside from running experiments, a scientist may only consider how to define a new model, how to modify an existing model, and how to interpret an experiment result. By using XML to describe a simulation model and unify various implementation layers, changing an existing model in a PSE can be intuitive and fast. At the execution management level, how an experiment is executed is the main concern. By providing a computational steering capability, a scientist can pause, examine, and compare the intermediate results from a simulation. Contrasted with the traditional way of running a lengthy simulation to see the result at the end, computational steering can leverage the user's expert knowledge on the fly (during the simulation run) and provide new insights and new product design opportunities. This thesis illustrates these concepts and implementation by using WBCSim as an example. WBCSim is a PSE that increases the productivity of wood scientists conducting research on wood-based composite materials and manufacturing processes. It integrates Fortran 90 simulation codes with a Web based graphical front end, an optimization tool, and various visualization tools. The WBCSim project was begun in 1997 with support from United States Department of Agriculture, Department of Energy, and Virginia Tech. It has since been used by students in several wood science classes, by graduate students and faculty, and by researchers at several forest products companies. WBCSim also serves as a test bed for the design, construction, and evaluation of useful, production quality PSEs. / Ph. D.
1290

Verification of a two-dimensional infiltration model for the resin transfer molding process

Hammond, Vincent H. 12 March 2009 (has links)
A two-dimensional finite element model for the infiltration of a dry textile preform by an injected resin has been verified. The model, which is based on the finite element/control volume technique, determines the total infiltration time and the pressure increase at the mold inlet associated with the RTM process. Important input data for the model are the compaction and permeability behavior of the preform along with the kinetic and rheological behavior of the resin. The compaction behavior for several textile preforms was determined by experimental methods. A power law regression model was used to relate fiber volume fraction to the applied compaction pressure. Results showed a large increase in fiber volume fraction with the initial application of pressure. However, as the maximum fiber volume fraction was approached, the amount of compaction pressure required to decrease the porosity of the preform rapidly increased. Similarly, a power law regression model was used to relate permeability to the fiber volume fraction of the preform. Two methods were used to measure the permeability of the textile preform. The first, known as the steady state method, measures the permeability of a saturated preform under constant flow rate conditions. The second, denoted the advancing front method, determines the permeability of a dry preform to an infiltrating fluid. Water, corn oil, and an epoxy resin, Epon 815, were used to determine the effect of fluid type and viscosity on the steady state permeability behavior of the preform. Permeability values measured with the different fluids showed that fluid viscosity had no influence on the permeability behavior of 162 E-glass and TTI IM7/8HS preforms. Permeabilities measured from steady state and advancing front experiments for the warp direction of 162 E-glass fabric were similar. This behavior was noticed for tests conducted with corn oil and Epon 815. Comparable behavior was observed for the warp direction of the TTl 1M7/8HS preform and corn oil. Fluid/fiber interaction was measured through the use of the single fiber pull-out test. The surface tension of both the corn oil and Epon 815 was determined. The contact angle between these two fluids and glass and carbon fibers was also measured. These tests indicated that the glass fiber had a lower contact angle than the carbon fiber and therefore is wet out better than the carbon fiber by both fluids. This result is attributed to the sizing commonly used on the carbon fibers. Mold filling and flow visualization experiments were performed to verify the analytical computer model. Frequency dependent electromagnetic sensors were used to monitor the resin flow front as a function of time. For the flow visualization tests, a video camera and high resolution tape recorder were used to record the experimental flow fronts. Comparisons between experimental and model predicted flow fronts agreed well for all tests. For the mold filling tests conducted at constant flow rate injection, the model was able to accurately predict the pressure increase at the mold inlet during the infiltration process. A kinetics model developed to predict the degree of cure as a function of time for the injected resin accurately calculated the increase in the degree of cure during the subsequent cure cycle. / Master of Science

Page generated in 0.1105 seconds