31 |
A contribution on modeling methodologies for multibody systems. / Contribuição em metodologias de modelagem para sistemas multicorpos.Renato Maia Matarazzo Orsino 01 April 2016 (has links)
Multibody System Dynamics has been responsible for revolutionizing Mechanical Engineering Design by using mathematical models to simulate and optimize the dynamic behavior of a wide range of mechanical systems. These mathematical models not only can provide valuable informations about a system that could otherwise be obtained only by experiments with prototypes, but also have been responsible for the development of many model-based control systems. This work represents a contribution for dynamic modeling of multibody mechanical systems by developing a novel recursive modular methodology that unifies the main contributions of several Classical Mechanics formalisms. The reason for proposing such a methodology is to motivate the implementation of computational routines for modeling complex multibody mechanical systems without being dependent on closed source software and, consequently, to contribute for the teaching of Multibody System Dynamics in undergraduate and graduate levels. All the theoretical developments are based on and motivated by a critical literature review, leading to a general matrix form of the dynamic equations of motion of a multibody mechanical system (that can be expressed in terms of any set of variables adopted for the description of motions performed by the system, even if such a set includes redundant variables) and to a general recursive methodology for obtaining mathematical models of complex systems given a set of equations describing the dynamics of each of its uncoupled subsystems and another set describing the constraints among these subsystems in the assembled system. This work also includes some discussions on the description of motion (using any possible set of motion variables and admitting any kind of constraint that can be expressed by an invariant), and on the conditions for solving forward and inverse dynamics problems given a mathematical model of a multibody system. Finally, some examples of computational packages based on the novel methodology, along with some case studies, are presented, highlighting the contributions that can be achieved by using the proposed methodology. / A Dinâmica de Sistemas Multicorpos tem sido responsável por revolucionar projetos de Engenharia Mecânica pela utilização de modelos matemáticos para simulação e otimização do comportamento dinâmico de uma ampla gama de sistemas mecânicos. Estes modelos matemáticos não somente podem fornecer valiosas informações acerca de um sistema que caso contrário poderiam ser obtidas somente através de experimentos com protótipos, como também têm sido responsável pelo desenvolvimento de diversos sistemas de controle baseados em modelo. Este trabalho representa uma contribuição para a modelagem dinâmica de sistemas mecânicos multicorpos por meio do desenvolvimento de uma nova metodologia modular e recursiva que unifica as principais contribuições de diversos formalismos da Mecânica Clássica. A razão para propor tal metodologia é motivar a implementação de rotinas computacionais para a modelagem de sistemas mecânicos multicorpos complexos sem depender de pacotes de software de código fechado e, consequentemente, contribuir para o ensino de Dinâmica de Sistemas Multicorpos nos níveis de graduação e pós-graduação. Todos os desenvolvimentos teóricos são baseados em e motivados por uma revisão crítica da literatura, conduzindo a uma forma matricial geral das equações dinâmicas de movimento de um sistema mecânico multicorpos (que podem ser expressas em termos de qualquer conjunto de variáveis adotado para a descrição dos movimentos realizados pelo sistema, ainda que tal conjunto inclua variáveis redundantes) e a uma metodologia recursiva geral para a obtenção de modelos matemáticos de sistemas complexos, dado um conjunto de equações descrevendo a dinâmica de cada um de seus subsistemas desacoplados e outro descrevendo os vínculos entre estes subsistemas (no sistema) quando acoplado. Este trabalho também inclui algumas discussões acerca da descrição de movimentos (utilizando qualquer conjunto admissível de variáveis de movimento e admitindo qualquer tipo de vínculo que seja passível de descrição por invariantes), e das condições para a solução dos problemas de dinâmica direta e inversa dado um modelo matemático de um sistema multicorpos. Finalmente, alguns exemplos de pacotes computationais baseados na nova metodologia, juntamente com alguns estudos de caso, são apresentados, ressaltando as contribuições que podem ser alcançadas por meio do uso da metodologia proposta.
|
32 |
Apports de l'analyse comparée des processus de fragmentation et de création de débris dans la compréhension du comportement à l'écrasement de structures composites aéronautiques / Contributions of the comparative analysis of fragmentation and debris generation processes to the understanding of the behaviour of aeronautical composite structures under crushingTostain, Floran 02 December 2016 (has links)
La certification des aéronefs au crash ou à l’atterrissage dur nécessite de concevoir et dimensionner des structureslégères vérifiant les exigences d’absorption d’énergie. Le critère de performance est l’énergie d’absorptionspécifique (Specific Energy Absorption, SEA). Nos travaux expérimentaux et numériques visent une meilleurecompréhension de la contribution favorable ou défavorable des modes de ruine à la stabilité et à l’amplitude del’énergie consommée. Le travail expérimental, réalisé sur des échantillons plaques stratifiées en T700/M21 faible grammage et interlock 55% ou 100%, compare les niveaux et les évolutions des forces d’écrasement avec l’apparition et le maintien desmodes de ruine majeurs que sont l’évasement, les fragmentations en coeur de plis et localisée en bout de pli.L’observation et la mesure des processus dynamiques de fragmentation représentent un verrou contourné ici parune analyse point à point de la synchronisation entre les films des essais et les courbes force-déplacement, et parl’observation post-mortem des échantillons, des débris et des fragments. Les plaques ont une performance àl’écrasement sensible à l’épaisseur des plis et aux vitesses de déformation. Pour les interlocks, c’est le sens detissage qui a le plus d’effet sur l’amplitude et la stabilité de la SEA, et génère un évasement global plus instable.La simulation numérique dynamique transitoire non-linéaire est utilisée comme outil complémentaire de mesureet d’analyse des essais sur plaques T700/M21 [0°/90°]. La morphologie d’écrasement est bien reproduite.L’analyse des processus de ruine à l’échelle du pli fait apparaître l’interaction entre la résistance mécanique encompression transverse du matériau (Yc) et la résistance à la déchirure en cisaillement de la structure (GIIc), etl’articulation et/ou la compétition entre évasement et fragmentation en cœur de pli qui en découlent. La mesurede la contribution des trois modes de ruine dans l’énergie consommée effectuée au travers de l’évolution desseuils de ruine permet de suivre l’évolution correspondante de l’effort d’écrasement. Une étude a été menée surla robustesse du modèle, et permet d’évaluer plus généralement la sensibilité en amplitude et en stabilité de laSEA aux propriétés de résistance mécanique identifiées comme influentes. / The certification of aircrafts to hard landing or crash situations needs to design lightweight structures meetingrequirements in term of energy absorption. The Specific Energy Absorption (SEA) is used to compare theperformance of different structures. Experimental and numerical studies led in our work aim to improve theunderstanding of the influence of ruin modes on the crushing stability and the energy absorption capacity.Crushing experimental tests are carried on low-weight T700/M21 CFRP laminated plates and on 55% or 100%Interlock configurations. The crushing force value and its variations are compared to the proportion of inside plyfragmentation, localized fragmentation and splaying mode observed during the crushing process. The observationand the measure of the dynamic process of fragmentation are lock problems circumvented by two means. First, astep by step observation of synchronized tests’ pictures and force-displacement points is conducted. Second, apost-mortem observation of the specimen and a collect of debris and fragments is carried out. It is shown thatcomposite laminates behaviour is influenced by the ply thickness and the strain-rate parameters. For the Interlock,the woven directions have the most important effect on the SEA value and stability and can produce a globalfragmented splaying with some instability. Nonlinear transient dynamic numerical simulations are used as an additional tool to measure and analyse the experimental tests on T700/M21 [0°/90°] plates. The crushing morphology is correctly reproduced. The analysis of damage at the mesoscale shows the interaction between the mechanical transverse compressive strength of thematerial (Yc) and the shear strength of interfaces between plies (GIIc), and the link and/or the competition betweensplaying and inside ply fragmentation. The measure of the contribution of the three ruin modes in the dissipatedenergy is performed and linked to the variations of the crushing force. A study is carried out on the robustness ofthe model and allows linking the SEA value and stability to the mechanical strength properties identified asinfluential parameters.
|
33 |
Stress analysis of drillstring threaded connectionsSalihu, B. M. 11 1900 (has links)
The demand for energy from developed and developing economies of the world is
driving the search for energy resources to more challenging environments. The
exploration and exploitation of hydrocarbons now requires the drillbit to hit pay zones
from drillships or platforms that are located on water surfaces below which is, possibly,
in excess of ten thousand feet of water above the sea bed. From Brazil, to the Gulf of
Mexico and the Gulf of Guinea on the western coast of Africa, hitherto unfamiliar, but
now common, concepts in the drilling parlance such as ultra-deep drilling (UDD), ultraextended-
reach drilling (uERD) and slimhole drilling, are employed to reach and
produce reservoirs which a few decades ago would seem technologically impossible to
produce.
This is expected to exert tremendous demands on the physical and mechanical
properties of the drillstring components. Limiting factors for reaching and producing oil
and gas resources hidden very deep in the subsurface are both the capacity of the
drilling rig to support the weight of the drillstring, which in some instances can be
several kilometres long, and the bending, tensile and impact stresses the string has to
withstand in well trajectories that are getting both longer and more tortuous.
Associated with this increased well depths and complex well trajectories is the
prohibitive cost penalty of a failed drillstring. The in-service failure of drillstrings has
always been an issue in the industry long before the wells become this deep and
complex. The global oil and gas industry estimates the cost of string failure to be in
excess of quarter of a billion dollars annually.
Researchers are continuously looking for ways to design against string failure and
improve the level of confidence in drillstrings. Defect-tolerant design, tooljoint geometry
modification and surface coldworking are just a few of the ideas that have gained
mileage in this effort. Others that are now in consideration are the use of nonconventional
materials such as aluminium and titanium alloys for drillstring
components. More novel, still, is the use of a combination of two materials - one ‘softer’
than the other to form a hybrid string of two materials of unequal moduli of elasticity.
This is done to make the string lighter, reduce stress concentration factor at the
connections and place fatigue resistant materials in areas of high well bore curvature.In this work a computational technique in the form of two-dimensional finite element
analysis is used to develop a robust model of a drillstring connection and to analyse the
stresses on the model of a threaded connection of standard drillstring tooljoint made
from alloy steel. Further comparative analyses were undertaken on models of
drillstrings made from a newly developed drillstring material for ultra-deep drilling, the
UD-165, aluminium and titanium alloys and, finally, on hybrid drillstrings made from two
different materials of unequal moduli of elasticity.
The aim is not only to develop and validate a better method of computational drillstring
analysis but also to use the model to investigate and suggest areas of optimisation that
will benefit industry especially in the areas hybrid strings.
|
34 |
Multiobjective Shape Optimization of Linear Elastic Structures Considering Multiple Loading Conditions (Dealing with Mean Compliance Minimization problems)SHIMODA, Masatoshi, AZEGAMI, Hideyuki, SAKURAI, Toshiaki 15 July 1996 (has links)
No description available.
|
35 |
複数荷重を考慮した線形弾性体の多目的形状最適化(平均コンプライアンス最小化問題を例として)下田, 昌利, Shimoda, Masatoshi, 畔上, 秀幸, Azegami, Hideyuki, 桜井, 俊明, Sakurai, Toshiaki 02 1900 (has links)
No description available.
|
36 |
複数荷重を考慮した線形弾性体の形状最適化 (力法による体積最小設計)下田, 昌利, Shimoda, Masatoshi, 畔上, 秀幸, Azegami, Hideyuki, 井原, 久, Ihara, Hisashi, 桜井, 俊明, Sakurai, Toshiaki 07 1900 (has links)
No description available.
|
37 |
Euplectella Aspergillum’s Natural Lattice Structure for Structural Design & Stability Landscape of Thin Cylindrical Shells with Dimple ImperfectionsSloane, Zoe Y. 21 March 2022 (has links)
The first portion of this thesis assesses the structural application of a bracing design inspired by the deep-sea sponge, Euplectella Aspergillum. Many studies have investigated the natural strength found in the unique skeletal structure of this species. The braced design inspired by the sponge features square frames with two sets of cross-braces that are offset from the corners of each frame, creating a pattern of open and closed cells. This study reports the results of multiple Finite Element Analysis (FEA) computations that compare the described bracing pattern to a more common bracing design used in structural design. The designs are compared in two configurations; the first is a simplified tall building design, and the second is a slender plate design. Results indicate that the sponge’s natural pattern produces considerable mechanical benefit when only considering elastic behavior. However, the same was not true when considering plastic material properties. In conclusion to these observations, the sponge-inspired lattice design is determined to be an efficient alternative to slender-solid plates but not for lateral-resisting systems intended for tall building design.
The second topic of discussion in this thesis concerns the stability of thin cylindrical shells with imperfections. The structural stability of these members is highly sensitive to the size and shape of an imperfection. An accurate prediction of the capacity of an imperfect cylindrical shell can be determined using non-destructive testing techniques. This method does require previous knowledge of the characteristics of the imperfection, which realistically is unknown. In the hope of creating a technique to find the location of an imperfection, this study analyzes the trends in the stability landscapes of the surrounding area of an imperfection. The imperfection of interest in this study has an amplitude equivalent to the thickness of the shell. Using FEA to simulate non-destructive probing tests, it is established that there is a distinct area surrounding the imperfection where the axial load and peak probe force curves show the influence of the imperfection. This area is referred to as the zone of influence and can be used to create an efficient process to locate an imperfection on a thin cylindrical shell.
|
38 |
Transient SH-Wave Interaction with a Cohesive InterfaceKowalski, Benjamin John January 2014 (has links)
No description available.
|
39 |
[en] REACTIVATION OF GEOLOGICAL FAULTS WITH DISCRETE AND DISTRIBUTED NUMERICAL MODELS / [pt] REATIVAÇÃO DE FALHAS GEOLÓGICAS COM MODELOS NUMÉRICOS DISCRETOS E DISTRIBUÍDOJULIO ALBERTO RUEDA CORDERO 03 September 2015 (has links)
[pt] Em reservatórios complexos com descontinuidades geológicas como falhas, os riscos na produção de petróleo e gás pelos métodos de injeção frequentemente utilizados são maiores. Um dos fenômenos que pode acarretar graves problemas de perda de produção e acidentes ambientais é a reativação de falhas geológicas. Isto ocorre devido às variações de tensões induzidas na formação, as quais podem ser suficientemente altas para reativar as falhas e modificar significativamente o comportamento do reservatório, gerando uma das situações mais críticas na indústria de petróleo. Nessa dissertação investiga-se através do método dos elementos finitos o fenômeno de reativação de falhas com base em modelos de representação explícita da falha através de elementos de interface. Adota-se ainda para efeitos de comparação uma modelagem da falha por meio de uma zona de falha através do conceito de contínuo equivalente. Uma metodologia com base em uma análise poro-elastoplástica desacoplada que permite estimar as pressões limite para a reativação durante a produção em reservatórios de petróleo de uma maneira versátil e eficiente foi empregada nas situações investigadas através do simulador Abaqus. Para tal, foram implementadas uma série de rotinas para incorporar ao programa Abaqus novos elementos de interface, governados pelo modelo constitutivo de Mohr-Coulomb. A metodologia apresentada foi avaliada e verificada através da simulação de um modelo sintético com falha normal comparando os resultados com uma solução analítica simplificada e com os resultados obtidos com o simulador de elementos finitos AEEPECD (Costa, 1984). São apresentados alguns exemplos de aplicação representando a falha com elementos de interface e como um contínuo equivalente. Os resultados obtidos nas análises demonstram a aplicabilidade da metodologia a problemas de campos reais. / [en] In complex reservoirs with geological discontinuities, such as faults, the risk in the production of oil and gas are increase by the injection methods frequently used. The injection and depletion processes induce stress variations in the formation. These can be high enough to reactivate faults and significantly modify the behavior of the reservoir, bringing on one of the most critical situations in the oil industry. In this context, this dissertation investigates the phenomenon of fault reactivation by employing the finite element method based on an explicit representation of the fault with interface elements. In addition, a fault zone model based on an equivalent continuum approach is adopted for comparison. The pressure limits during production of oil reservoirs considering fault reactivation are determined from pore-elastoplastic uncoupled analyses with the software Abaqus. With this purpouse, interfaces elements with Mohr-Coulomb constitutive model were implemented through user subroutine in Abaqus to represent, in an approximate way, the fault behavior. In addition, other tools were developed to facilitate the generation of the models to be analyzed. The presented methodology was evaluated and verified through the simulation of a synthetic model with a normal fault. The results were compared with a simplified analytical approach and the results obtained by finite element simulator AEEPECD (Costa, 1984). Some examples of applications are presented, in which faults are represented using interface elements and alternatively, through an equivalent continuum approach. The analysis results demonstrate the applicability of the methodology to real fields.
|
40 |
Incremental sheet forming process : control and modellingWang, Hao January 2014 (has links)
Incremental Sheet Forming (ISF) is a progressive metal forming process, where the deformation occurs locally around the point of contact between a tool and the metal sheet. The final work-piece is formed cumulatively by the movements of the tool, which is usually attached to a CNC milling machine. The ISF process is dieless in nature and capable of producing different parts of geometries with a universal tool. The tooling cost of ISF can be as low as 5–10% compared to the conventional sheet metal forming processes. On the laboratory scale, the accuracy of the parts created by ISF is between ±1.5 mm and ±3mm. However, in order for ISF to be competitive with a stamping process, an accuracy of below ±1.0 mm and more realistically below ±0.2 mm would be needed. In this work, we first studied the ISF deformation process by a simplified phenomenal linear model and employed a predictive controller to obtain an optimised tool trajectory in the sense of minimising the geometrical deviations between the targeted shape and the shape made by the ISF process. The algorithm is implemented at a rig in Cambridge University and the experimental results demonstrate the ability of the model predictive controller (MPC) strategy. We can achieve the deviation errors around ±0.2 mm for a number of simple geometrical shapes with our controller. The limitations of the underlying linear model for a highly nonlinear problem lead us to study the ISF process by a physics based model. We use the elastoplastic constitutive relation to model the material law and the contact mechanics with Signorini’s type of boundary conditions to model the process, resulting in an infinite dimensional system described by a partial differential equation. We further developed the computational method to solve the proposed mathematical model by using an augmented Lagrangian method in function space and discretising by finite element method. The preliminary results demonstrate the possibility of using this model for optimal controller design.
|
Page generated in 0.0918 seconds