• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dual Spin-Cast Thermally Interdiffused Polymeric Photovoltaic Devices

Kaur, Manpreet 31 August 2011 (has links)
An in depth study of the performance of thermally interdiffused concentration gradient polymer photovoltaic devices is carried out with particular attention to the effect of the thickness and the thermal treatments on the power conversion efficiency, short circuit current, open circuit voltage and other key electrical properties. Bilayer films of sequentially spin-cast donor and acceptor materials are exposed to various heat treatments in order to induce the interdiffusion. The depth profiles show concentration gradients in the donor and acceptor as a result of interdiffusion and these devices show an order of magnitude increase in the device performance compared to the bilayer devices. Dual spin-cast poly (3-octylthiophene-2,5-diyl) (P3OT)- [6,6] phenyl C61 butyric acid methyl ester (PCBM) and poly (3-hexylthiophene-2,5-diyl) (P3HT)-PCBM interdiffused devices are studied in detail by varying the thickness of the donor and acceptor layers as well as the annealing conditions for initial polymer layer and the time and temperature of the interdiffusion process. Auger spectroscopy and X-ray photoelectron spectroscopy along with ion beam milling are used to investigate the concentration gradient formed as a result of the interdiffusion. The sulfur signal present in the P3OT and P3HT backbone is detected to identify the concentration profiles in the P3OT-PCBM and P3HT-PCBM devices. The interdiffusion conditions and thickness of the active layers have been optimized to obtain the highest power conversion efficiency. The best device performance of the P3OT-PCBM interdiffused devices is achieved when the interdiffusion is carried out at 150°C for 20 minutes and the P3OT thickness is maintained at 70 nm and the PCBM thickness at 40-50 nm. The highest efficiency achieved for P3OT-PCBM interdiffused devices is 1.0% under AM1.5G solar simulated spectrum. In order to further increase the efficiency, P3OT is replaced by (P3HT) which has higher hole mobility. P3HT- PCBM based concentration gradient devices show improved device performance over P3OT-PCBM devices. Power conversion efficiency of the order of ~3.0% is obtained for P3HT-PCBM interdiffused devices when the interdiffusion is carried out at 150°C for 20 minutes. For both P3OT:PCBM and P3HT:PCBM devices, the optimum performance occurs when the concentration gradient extends across the entire film and is correlated with an increase in the short circuit current density and fill factor as well as a decrease in the series resistance. The results demonstrate that an interdiffused bilayer fabrication approach is a novel and efficient approach for fabrication of polymer solar cell devices. In addition, porphyrin derivative 5, 10, 15, 20-Tetraphenyl-21H, 23H-porphine zinc (ZnTPP) is studied as a new donor material for organic solar cells. ZnTPP: PCBM blend devices are investigated in detail by varying the weight ratio of the donor and acceptor materials in blend devices. The devices with ZnTPP: PCBM in 1:9 ratios showed the best device performance and the efficiency of the order of 0.2% is achieved under AM1.5G solar simulated conditions. Trimetallic Nitride Tempelated (TNT) endohedral fullerenes are also examined in this thesis as the novel acceptor materials. Bulk heterojunction or blend devices are fabricated with P3HT as the donor material and several TNT endohedral fullerenes as the acceptor material. Y3N@C₈₀PCBH based devices which are annealed both before and after the electrode deposition show improvement in the device performance compared to devices that are only annealed before the electrode deposition. The highest power conversion efficiency achieved for TNT endohedral fullerene devices is only 0.06%, suggesting that substantial additional work must be done to optimize the compatibility of the donor and acceptor as well as the device fabrication parameters. / Ph. D.
2

Concentration gradient patterns of traffic and non-traffic generated aerosols: Ultrafine, PM2.5, and coarse particles

Sparks, Christopher S. 26 September 2011 (has links)
No description available.
3

Effects of Thickness, Morphology and Molecular Structure of Donor and Acceptor Layers in Thermally Interdiffused Polymer Photovoltaics

Gopal, Anamika 02 May 2007 (has links)
An in-depth study of concentration gradients in thermally-interdiffused polymer – fullerene photovoltaic devices, with a focus on thickness and heat treatments, is presented in this thesis. Device performance is improved from the bilayer by the creation of a concentration gradient of the donor and acceptor materials throughout the active layer of the device. Concentration gradients are expected to improve device performance by optimizing the charge transfer, transport and collection processes. This is achieved through heat-induced interdiffusion of the two materials at temperatures above the glass transition temperature of the polymer. Investigation of the poly(3-octylthiophene) (P3OT) – C₆₀ system show a three-fold improvement in the external quantum efficiencies (EQE) as compared with bilayer devices. Auger spectroscopy, combined with argon-ion beam milling, serves to record the concentration depth profile and identify concentration gradients in the device through detection of the sulfur in the P3OT backbone. Concentration gradients are optimized to yield the best devices through a thickness variation study conducted on the P3OT – C₆₀ system for fixed thermal interdiffusion conditions at 118 °C for 5 minutes. An optimum thickness of 40 to 60 nm is obtained for the two materials that yields the ideal morphology of a concentration gradient as recorded by Auger spectroscopy. For such devices, the concentration gradient is seen to extend through the device, ending in a thin layer of pure material at each electrode. A monochromatic power conversion efficiency of 2.05% is obtained for 5.3 mW/cm²⁺ illumination at 470 nm. A brief study is also presented to optimize the concentration gradient profile through variations of the thermal parameters. The dependence of the concentration gradient on the interdiffusion time and temperature is investigated. The merits of heat treatment on the crystallinity of P3OT and the overall device performance are also discussed. It is shown in some case that devices with annealed P3OT layers show almost twice the EQE as non-annealed P3OT layer devices. Potential alternatives for C₆₀ in interdiffused devices with P3OT have been presented. [6,6]-phenyl C₆₁-butyric acid methyl ester (PCBM), a well-investigated acceptor for blend devices, is studied as an acceptor in concentration gradient devices. A method for spin-coating uniform bilayers of P3OT and PCBM, without solution damage to either layer, is presented. A thermal variation study of the interdiffusion conditions on this system indicated higher interdiffusion temperatures and times are preferred for P3OT – PCBM systems. For interdiffusion at 150 °C for ten minutes, EQE values approaching 35 % at 500 nm are obtained. Auger spectroscopy studies on this system yielded the same conclusions about the concentration gradient device morphology that gives optimum device output. 1:1 and 1:2 blends of P3OT – PCBM are also studied. The influence of various thermal treatments on these devices is described. The endohedral fullerene Sc₃N@C₈₀ is introduced as a new acceptor material. The endohedral fullerene consists of Sc₃N cluster enclosed in a C₈₀ cage. An order of magnitude increase is seen in device performance upon sublimation of these molecules on a P3OT layer confirming its effectiveness as an acceptor. Preliminary studies done on this system indicated the need for greater thermal treatment to produce optimum concentration gradients. An in depth study for varying temperatures and times is presented. The best device performance was seen for interdiffusion at 160 °C for 25 minutes. The endohedral fullerene devices also show a long-term deterioration and so best result are presented from a set of devices fabricated within the same time period. The study of these three donor-acceptor systems confirms that the conclusions on the thickness dependence and device performance study conducted for the P3OT – C₆₀ system extend to other acceptors. A model of EQE for varying thicknesses based on absorption in the interdiffused concentration gradient regions is also presented. This model effectively highlights the influence of P3OT layer thickness on the trends observed in the EQE. It did not, however, reproduce the experimental thickness variation results for varying C₆₀ thicknesses. Incorporation of the effects of the electric field intensity distribution is expected to correct for this. Suggestions have been given on how this might be achieved. / Ph. D.
4

Síntese, processamento e caracterização de vitrocerâmicas com gradiente funcional /

Morais, Dayana Campanelli de. January 2017 (has links)
Orientador: Alexandre Luiz Souto Borges / Coorientadora: Eliandra de Sousa Trichês / Banca: Renata Marques de Melo Marinho / Banca: Paulo Francisco César / Resumo: O presente estudo teve como objetivo desenvolver vitrocerâmicas de dissilicato de lítio com gradiente funcional de densidade, inspirado no gradiente natural que existe entre o esmalte e a dentina. Primeiramente o vidro de composição: 33,33% mol de Li2O e 66,67% mol de SiO2 foi obtido pelo método fusão/resfriamento. Em seguida foram preparadas amostras com estruturas homogêneas do vidro a base de dissilicato de lítio para determinação dos melhores parâmetros de sinterização. Três diferentes tratamentos térmicos, determinados com base no resultado da análise diferencial de calorimetria foram utilizados: 850 °C/3h; 900 °C/3h e 950 °C/3h. A caracterização desses materiais foi realizada através da difração de raios X, microscopia eletrônica de varredura, método de Arquimedes e ensaio de flexão biaxial (n=10). O tratamento térmico de 950 oC obteve os melhores resultados, sendo o escolhido para a realização das próximas etapas do estudo. Com a finalidade de otimizar a estética, foi adicionada cerâmica feldspática (VITAVM®9) ao vidro SiO2-Li2O na proporção de 10%, 15% e 20% (n=30). Foi observado que a adição de 10% de VM9 não alterou a resistência do material, e quanto maior a quantidade de VM9, maior foi a translucidez e menor foram o módulo elástico e a densidade. Com isso, foram preparadas vitrocerâmicas bioinspiradas com gradiente funcional de densidade nas seguintes sequências de camadas: uma com 10% de VM9, outra com 15% e a última com 20%. Não houve diferença na resistência à ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: This study objective is to develop a lithium disilicate glass ceramic with functional density gradient, inspired by the natural gradient between enamel and dentin. First, the composition glass: 33.33 mol% Li2O and 66.67 mol% SiO2 was obtained by the melting/cooling process. Specimens with homogeneous glass structures based on lithium disilicate were prepared to determine the best sintering parameters. Three different heat treatments, determined based on the result of the differential calorimetry analysis were used: 850 °C/3h; 900 °C/3h and 950 °C/3h. The characterization of these materials was performed by X-ray diffraction, scanning electron microscopy, Archimedes method and biaxial flexural test (n=10). The heat treatment of 950 ºC obtained the best results, being chosen for the next stages of this study. In order to optimize aesthetics, feldspathic ceramics (VITAVM®9) were added to the SiO2-Li2O glass in 10%, 15% and 20% (n=30). It was observed that the addition of 10% of VM9 did not alter the material resistance, and the higher the amount of VM9, the greater translucency and lower elastic modulus and density. Thus, bioinspired glass ceramics with functional density gradients were prepared in the following layer sequences: one with 10% of VM9, one with 15% and the last with 20%. It was evaluated that there was no difference in the biaxial flexural strength of the gradient group, when the denser layer received traction, comparing the homogeneous structure group with 15% of VM9. The translucency of the gradient group was equivalent to the most translucent homogeneous group, with 20% of VM9. In conclusion, it was possible to synthesize a functionally graduated lithium disilicate glass ceramic with good mechanical resistance and good translucency / Mestre
5

A COMPARISON OF TWO COMMERCIAL STRIPS WITH PREDEFINED ANTIBIOTIC CONCENTRATION GRADIENTS FOR SUSCEPTIBILITY TESTING OF PERIODONTAL BACTERIAL PATHOGENS

Bui, Hanh January 2013 (has links)
Objectives: Systemic antibiotics are generally recognized as providing a beneficial impact in treatment of both aggressive and chronic periodontitis. Since strains of periodontal pathogens among periodontitis patients may vary in their antibiotic drug resistance, the American Academy of Periodontology recommends antimicrobial susceptibility testing of suspected periodontal pathogens prior to administration of systemic periodontal antibiotic therapy, to reduce the risk of a treatment failure due to pathogen antibiotic resistance. E-test and MIC Test Strip assays are two in vitro antimicrobial susceptibility testing systems employing plastic- and paper-based, respectively, carriers loaded with predefined antibiotic gradients covering 15 two-fold dilutions. To date, no performance evaluations have been carried out comparing the Etest and MIC Test Strip assays in their ability to assess the in vitro antimicrobial susceptibility of periodontal bacterial pathogens. As a result, the purpose of this study was to compare the in vitro performance of E-test and MIC Test Strip assays in assessing minimal inhibitory concentration (MIC) values of four antibiotics frequently utilized in systemic periodontal antibiotic therapy against 11 fresh clinical subgingival isolates of the putative periodontal pathogen, Prevotella intermedia/ nigrescens, and to compare the distribution of P. intermedia/ nigrescens strains identified with interpretative criteria as "susceptible" and "resistant" to each of the four antibiotics using MIC values determined by the two antimicrobial susceptibility testing methods. Methods: Standardized cell suspensions, equivalent to a 2.0 McFarland turbidity standard, were prepared with 11 fresh clinical isolates of P. intermedia/nigrescens, each recovered from the subgingival microbiota of United States chronic periodontitis subjects, and plated onto to the surfaces of culture plates containing enriched Brucella blood agar. After drying, pairs of antibiotic-impregnated, quantitative, gradient diffusion strips from two manufacturers (E-test, bioMérieux, Durham, NC, USA, and MIC Test Strip, Liofilchem s.r.l., Roseto degli Abruzzi, Italy) for amoxicillin, clindamycin, metronidazole, and doxycycline were each placed apart from each other onto the inoculated enriched Brucella blood agar surfaces, so that an antibiotic test strip from each manufacturer was employed per plate against each P. intermedia/ nigrescens clinical isolate for antibiotic susceptibility testing. After 48-72 hours anaerobic jar incubation, individual MIC values for each antibiotic test strip against P. intermedia/nigrescens were read in μg/ml at the point where the edge of the bacterial inhibition ellipse intersected with the antibiotic test strip. MIC50, MIC90, and MIC range were calculated and compared for each of the test antibiotics, with essential agreement (EA) values determined per test antibiotic for the level of outcome agreement between two antimicrobial susceptibility testing methods. In addition, the identification of antibiotic "susceptible" and "resistant" strains among the P. intermedia/nigrescens clinical isolates was determined for each test antibiotic using MIC interpretative criteria from the MIC interpretative standards developed by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) for gram-negative anaerobic bacteria for amoxicillin, clindamycin, and metronidazole findings, and from the French Society of Microbiology breakpoint values for anaerobic disk diffusion testing for doxycycline data. Results: For amoxicillin, higher MIC50 and MIC90 values against the P. intermedia/ nigrescens strains were found with the MIC Test Strip assay than with E-test strips, resulting in a relatively low EA value of 45.5% between the two susceptibility testing methods. A higher percentage of amoxicillin "resistant" P. intermedia/nigrescens strains (72.7%) were identified by MIC Test Strips as compared to E-test strips (54.5%), although both methods found the same proportion of amoxicillin "susceptible" strains (27.3%). For clindamycin, both susceptibility testing methods provided identical MIC values (EA value = 100%), and exactly the same distributions of "susceptible" and "resistant" strains of P. intermedia/nigrescens. For metronidazole, only very poor agreement (EA value = 9.1%) was found between the two susceptibility testing methods, with MIC Test Strips exhibiting markedly higher MIC50 and MIC90 values against P. intermedia/nigrescens as compared to E-test strips. However, the distribution of "susceptible" and "resistant" P. intermedia/ nigrescens were identical between the two susceptibility testing methods. For doxycycline, relatively good agreement (EA value = 72.7%) was found in MIC concentrations between the two susceptibility testing methods, although generally lower MIC values were associated with MIC Test Strips. In addition, identical distributions of "susceptible" and "resistant" P. intermedia/nigrescens were provided by both susceptibility testing methods. Conclusions: Relative to MIC values measured against periodontal strains of P. intermedia/nigrescens, MIC Test Strips gave higher MIC values with amoxicillin and metronidazole, equal MIC values with clindamycin, and lower MIC values with doxycycline, as compared to MIC values measured with the E-test assay. Relative to the identification of antibiotic "susceptible" periodontal P. intermedia/ nigrescens strains, both susceptibility testing methods provided identical findings, suggesting that both methods appear to be interchangeable for clinical decision making in regard to identification of antibiotic-sensitive strains of periodontal P. intermedia/nigrescens. However, for epidemiologic surveillance of drug susceptibility trends, where exact MIC values are important to track over time, the relatively higher proportion of non-exact MIC differences between the two susceptibility testing methods argues against using them interchangeably. Instead, one or the other method should be used consistently for such studies. Further comparative studies of the E-test and MIC Test Strip assays are indicated using other periodontopathic bacterial species besides P. intermedia/ nigrescens, and to assess the reproducibility of MIC values provided by both in vitro susceptibility testing methods over time. / Oral Biology
6

Assessing landscape and seasonal controls on CO2 fluxes in a karst sinkhole

Thompson, Taryn Karie 06 January 2022 (has links)
Karst landscapes can serve as carbon sinks when carbon dioxide (CO2) reacts with water to form carbonic acid, which then weathers carbonate rocks. However, CO2 can also move through the subsurface via gas diffusion, a process that is not well-understood in karst systems. This study focused on quantifying CO2 diffusion within a karst sinkhole. The objectives of this study were to: 1) identify the depth of the zero-flux plane (i.e., depths of local maximum CO2 concentrations), analyze the distributions of concentration gradients, and investigate the validity of a uniform concentration gradient throughout the profile; and 2) assess the influences of vertical position and seasonality on CO2 fluxes within this sinkhole. The study site contained three locations within the sinkhole, including shoulder, backslope, and toeslope locations. Each location had three soil CO2 and three soil water content/temperature sensors placed at 20, 40, and 60 cm depths. Zero-flux planes were seldom detectable during the warm season (April-September) but were frequently found near the surface (20 or 40 cm) during the cool season (October-March). The common assumption of a uniform concentration gradient was often invalid based on relative concentrations between sensor pairs. As for the second objective, CO2 fluxes generally followed a trend of upward fluxes in warmer months that was partially offset by downward fluxes during the cooler months. These study results provide new insight into CO2 dynamics in a karst system, and suggest that subsurface processes such as chemical weathering and cave ventilation affect the direction and magnitude of CO2 fluxes. / Master of Science / Carbon dioxide (CO2) within soils is a larger pool of CO2 than atmospheric CO2. Therefore, the movement of CO2 within soils is important to understand, as soil CO2 may eventually diffuse through the soil and into the atmosphere. Soil CO2 movement is dependent on many factors such as soil water content, porosity, and temperature. Soil CO2 movement may vary between landscapes as well, due to chemical weathering processes being sinks of soil and atmospheric CO2. One type of important landscape is karst, which can be identified by easily soluble rocks, usually in the forms of limestone and dolomite rocks. In order to investigate the influences of karst landscapes on the movement of soil CO2, in this study I identified the depths of CO2 maximum concentrations and CO2 movement over time and by sinkhole slope position. The results from this study were that the depth of maximum CO2 concentration was deeper, > 40 cm, during the warmer months and often shallower, ≤ 40 cm, during the cooler months. The CO2 fluxes generally followed a trend of upward fluxes in warmer months that was partially offset by downward fluxes during the cooler months. The results from this study suggest that due to vertical differences in soil properties, temperature, chemical weathering of the karst rock, and cave ventilation the depth of the maximum CO2 concentration and the CO2 movement vary by season and sinkhole slope location. This study provides new insight to CO2 movement relative to karst landscapes while highlighting the importance of soil and geologic properties as influences that can alter the direction and magnitude of CO2 fluxes.
7

Performance, Temperature and Concentration Profiles in a Non-Isothermal Ammonia-Fueled Tubular SOFC

Jantakananuruk, Nattikarn 18 April 2019 (has links)
Ammonia has emerged as an attractive potential hydrogen carrier due to its extremely high energy density (hydrogen density), ease of storage and transportation as a liquid, and carbon-free nature. Direct utilization of ammonia in high-temperature solid oxide fuel cells (SOFCs) has been demonstrated over the past decade. Concurrence of in situ endothermic ammonia decomposition and exothermic electrochemical hydrogen oxidation permit efficient heat integration. In this study, the experimental analyses of axial temperature and concentration profiles along the tubular SOFC (t-SOFC) fed directly with ammonia are performed to investigate the coupled ammonia decomposition and hydrogen oxidation reactions as well as the effect of polarization. Fast ammonia decomposition over the Ni catalyst is evident at the inlet of t-SOFC and complete ammonia conversion is confirmed above 600ºC. It is found that direct ammonia-fueled t-SOFC and an equivalent hydrogen-nitrogen fueled t-SOFC provide identical performances. With 100 SCCM of ammonia fuel feed, a maximum power of 12.2 W and fuel utilization of 81% are obtained at 800ºC in a t-SOFC with active area of 32 cm2. The temperature and concentration profiles validate that the efficient heat integration inside ammonia-fueled t-SOFC is feasible if t-SOFC is operated at the temperature of 700ºC and below. The 23-hour performance test and SEM-EDS images of the fresh and used Ni-YSZ cermet surfaces confirm uniform performance and good durability of ammonia t-SOFC.
8

Fluorescence-based nanofluidic biosensor platform for real-time measurement of protein binding kinetics / Développement d'une plateforme nanofluidique de biodétection en fluorescence pour la mesure de cinétiques d'interaction de protéines en temps-réel

Teerapanich, Pattamon 10 November 2015 (has links)
L'analyse cinétique d'interactions de protéines offre une multitude d'informations sur les fonctions physiologiques de ces molécules au sein de l'activité cellulaire, et peut donc contribuer à l'amélioration des diagnostics médicaux ainsi qu'à la découverte de nouveaux traitements thérapeutiques. La résonance plasmonique de surface (SPR) est la technique de biodétection optique de référence pour les études cinétiques d'interaction de molécules biologiques. Si la SPR offre une détection en temps réel et sans marquage, elle nécessite en revanche des équipements coûteux et sophistiqués ainsi que du personnel qualifié, limitant ainsi son utilisation au sein de laboratoires de recherche académiques. Dans ces travaux de thèse, nous avons développé une plateforme de biodétection basée sur l'utilisation de nanofentes biofonctionnalisées combinées avec une détection par microscopie à fluorescence. Ce système permet l'observation en temps réel d'interactions protéines-protéines et la détermination des constantes cinétiques associées, avec des temps de réponse optimisés et une excellente efficacité de capture. La fonctionnalité du système a été démontrée par l'étude des cinétiques d'interaction de deux couples modèles de différentes affinités : le couple streptavidine/biotine et le couple IgG de souris/anti-IgG de souris. Une très bonne cohérence entre les constantes cinétiques extraites, celles obtenues par des expériences similaires réalisées en SPR et les valeurs rapportées dans la littérature montre que notre approche pourrait être facilement applicable pour l'étude cinétique d'interactions de protéines avec une sensibilité allant jusqu'au pM, sur une large gamme de constantes de dissociation. De plus, nous avons intégré un générateur de gradient de concentrations microfluidique en amont de nos nanofentes, permettant ainsi des mesures simultanées de cinétiques d'interactions à différentes concentrations d'analyte en une seule expérience. Ce système intégré offre de nombreux avantages, tels qu'une réduction de la consommation des réactifs et des temps d'analyse par rapport aux approches séquentielles classiques. Cette technologie innovante pourrait ainsi être un outil précieux non seulement pour les domaines du biomédical et de la médecine personnalisée mais aussi pour la recherche fondamentale en chimie et biologie. / Kinetic monitoring of protein-protein interactions offers fundamental insights of their cellular functions and is a vital key for the improvement of diagnostic tests as well as the discovery of novel therapeutic drugs. Surface plasmon resonance (SPR) is an established biosensor technology routinely used for kinetic studies of biomolecular interactions. While SPR offers the benefits of real-time and label-free detection, it requires expensive and sophisticated optical apparatus and highly trained personnel, thus limiting the accessibility of standard laboratories. In this PhD project, we have developed an alternative and cost-effective biosensor platform exploiting biofunctionalized nanofluidic slits, or nanoslits, combined with a bench-top fluorescence microscope. Our approach enables the visualization of protein interactions in real-time with the possibility to determine associated kinetic parameters along with optimized response times and enhanced binding efficiency. We have demonstrated the effectiveness of our devices through kinetic studies of two representative protein-receptor pairs with different binding affinities: streptavidin-biotin and mouse IgG/anti-mouse IgG interactions. Good agreement of extracted kinetic parameters between our device, SPR measurements and literature values indicated that this approach could be readily applicable to study kinetics of protein interactions with sensitivity down to 1 pM on a large scale of dissociation constants. In addition, we have incorporated a microfluidic gradient generator to our validated nanoslit device, which has allowed one-shot parallel kinetic measurements to be realized in a single-experiment. This integrated system provides advantages of diminished material consumption and analysis time over the conventional kinetic assays. We believe that this innovative technology will drive future advancements not only in the discipline of biomedical and personalized medicine, but also in basic chemical/biological research.
9

Zeitaufgelöste PIV-Untersuchungen zur Strömungskontrolle mittels elektromagnetischer Kräfte in schwach leitfähigen Fluiden

Cierpka, Christian 23 April 2009 (has links) (PDF)
Die vorwiegend experimentelle Arbeit befasst sich mit der systematischen Untersuchung von Parametervariationen bei der aktiven Strömungskontrolle mit elektromagnetischen Kräften. An einer angestellten Platte und einem NACA0015-Profil wurde die saugseitige abgelöste Strömung durch das Einbringen einer periodischen wandparallelen Lorentzkraft an der Vorderkante beeinflusst und experimentell mittels zeitaufgelöster Particle Image Velocimetry (PIV) untersucht. Dabei wurde für verschiedene Anstellwinkel und Reynoldszahlen die Frequenz der Anregung, deren Impulseintrag und der zeitliche Kraftverlauf variiert. Strömungsmechanische Untersuchungen experimenteller und numerischer Natur wurden für eine elektrochemische Zelle und den Fall der Elektrolyse an Millieelektroden unter dem Einfluss externer Magnetfelder durchgeführt. Die Übereinstimmung der gemessenen und berechneten Geschwindigkeitsfelder war dabei sehr gut. Entgegen der Annahme, dass im Falle homogener Magnetfelder keine Strömungen induziert werden, konnte nachgewiesen werden, dass durch die lokale Krümmung der elektrischen Feldlinien in Elektrodennähe starke Lorentzkräfte generiert werden. Dies führt zu sehr komplexen Primär-und Sekundärströmungen. Die gleichen Effekte bewirken ebenfalls in der Nähe von Millieelektroden starke Lorentzkräfte in homogenen magnetischen Feldern. Die experimentellen Beobachtungen an Millieelektroden von Leventis et. al (2005), welche zum Beweis der Konzentrationsgradientenkraft herangezogen wurden, konnten alle auf das Wirken lokaler Lorentzkräfte zurückgeführt werden. Der experimentelle Nachweis der Konzentrationsgradientenkraft steht damit weiterhin aus. Zur Messung der Konzentrationen in elektrochemischen Systemen wurde erstmals das Hintergrundschlierenverfahren angewendet. Dieses Verfahren erlaubt die Bestimmung der räumlichen Konzentrationsgradienten mit erheblich weniger messtechnischen Aufwand gegenüber spektroskopischen Methoden und der Schlierentechnik.
10

EXTRACELLULAR METABOLIC PROFILING: MEASUREMENT OF SURFACE CONCENTRATIONS AND FLUXES TO DETERMINE CELLULAR KINETICS FROM 2D CULTURES USING ELECTROCHEMICAL MICROELECTRODE ARRAYS

Siddarth Vyraghrapuri Sridharan (5930366) 16 December 2020 (has links)
In 2D cell cultures uptake/release of various metabolic analytes such as glucose, lactate or metabolic by-products like hydrogen peroxide from/to the extracellular environment results in concentration gradients. The magnitude, direction, and time scales of these gradients carries information that is essential for internal cellular processes and/or for communication with neighboring cells. This PhD research work focusses on the design, fabrication and characterization of electrochemical microelectrode arrays (MEAs) optimized to be positioned in commonly used 2D cell culture setups. Importantly, by simultaneously measuring accurate concentration transients and associated gradients/uxes near the cell surface (surface concentration) the capability of the device to quantify kinetic rates and distinguish mechanisms involved in various cellular processes is demonstrated. An in-situ transient calibration technique suitable for amperometric MEAs is developed and the technique is validated by quantitatively measuring dynamic concentration profiles with varying spatial (100-800 µm) and time (s to hrs.) scales set up from an electrically controlled diffusion reaction system. With the proposed MEA design and technique three physiological applications are demonstrated. Firstly, the position able 1D MEA was employed real time to quantitatively measure the hydrogen peroxide scavenging rates from astrocyte vs glioblastoma cell cultures. With the ability to extract to dynamic surface concentration and fluxes, the cell lines were shown to have hydrogen peroxide uptake rates dependent on local surface concentrations. Moreover, the cancerous glioblastoma cells demonstrated an upregulated linear peroxide scavenging mechanism as compared to astrocytes. For the next phase, spatial scales of 1D MEA device along the size and functionalization scheme of the electrodes in the MEA was further modified to selectively sense glucose and lactate to enable extracellular metabolic profiling of cancer vs normal cell lines. Secondly, measurement of glucose concentration profiles demonstrated an increased glucose uptake rate in glioblastoma as compared to astrocytes. Additionally, sigmoidal (allosteric) vs Michaelis - Menten glucose uptake kinetics was observed in glioblastoma vs astrocytes. Moreover, the presence of a glucose sensing mechanism was observed in glioblastoma cells due to the dependence of the glucose uptake rate on initial exposed concentration rather than surface concentration. Finally, simultaneous multi-analyte (glucose and lactate) gradient measurements were performed on genetically modified mouse pancreatic cancer cell lines. While glucose uptake rate was shown to increase with increasing extracellular glucose concentration for one of the cell lines, the lactate release rate was observed to be independent of the initial extracellular glucose dose.

Page generated in 0.1153 seconds