• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 779
  • 513
  • 233
  • 155
  • 107
  • 98
  • 86
  • 27
  • 27
  • 19
  • 18
  • 18
  • 15
  • 15
  • 8
  • Tagged with
  • 2463
  • 337
  • 164
  • 141
  • 134
  • 129
  • 112
  • 107
  • 104
  • 104
  • 92
  • 82
  • 81
  • 80
  • 78
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Concentration-Discharge Relations in the Critical Zone: Implications for Resolving Critical Zone Structure, Function, and Evolution

Chorover, Jon, Derry, Louis A., McDowell, William H. 11 1900 (has links)
Critical zone science seeks to develop mechanistic theories that describe critical zone structure, function, and long-term evolution. One postulate is that hydrogeochemical controls on critical zone evolution can be inferred from solute discharges measured down-gradient of reactive flow paths. These flow paths have variable lengths, interfacial compositions, and residence times, and their mixing is reflected in concentration-discharge (C-Q) relations. Motivation for this special section originates from a U.S. Critical Zone Observatories workshop that was held at the University of New Hampshire, 20-22 July 2015. The workshop focused on resolving mechanistic CZ controls over surface water chemical dynamics across the full range of lithogenic (e.g., nonhydrolyzing and hydrolyzing cations and oxyanions) and bioactive solutes (e.g., organic and inorganic forms of C, N, P, and S), including dissolved and colloidal species that may cooccur for a given element. Papers submitted to this special section on concentration-discharge relations in the critical zone include those from authors who attended the workshop, as well as others who responded to the open solicitation. Submissions were invited that utilized information pertaining to internal, integrated catchment function (relations between hydrology, biogeochemistry, and landscape structure) to help illuminate controls on observed C-Q relations.
202

Effect of nozzle loads on the stress distribution inside unpartitioned plug type headerboxes

Nel, Hugh-Jean 11 June 2012 (has links)
M.Ing. / Dry air cooled heat exchangers form a vital part of industrial heat transfer systems, especially in countries where the supply and availability of clean cooling water is limited. Headerboxes are rectangular pressure vessels that act as the inlet distribution and outlet collection devices. As rectangular pressure vessels, headerboxes are subject to design codes such as ASME (ASME Section VIII, Division 1, 2007). Unfortunately ASME (ASME Section VIII, Division 1, 2007) offers no guidance on how to allow for the effect of external loads applied to the headerbox through the vessel’s nozzles. This creates a difficult situation, since vessel designers are mandated by ASME to consider the effects of nozzle loads by American Petroleum Institute standard 661 (API, 2006). The aim of this project was therefore to develop a closed form design methodology that accurately predicts the stresses inside a headerbox that is subject to external loadings as well as internal pressure. After extensive research it was decided that the only viable approach would be to extend ASME’s rigid frame theory. This was done, and a new set of equations describing the stress distribution inside a headerbox were derived. These equations were then tested using 2D Finite Element Analysis (FEA) to determine whether they represented the reality of the 2D model they described. It was found that the equations were accurate enough in 2D and the next step was to test the model experimentally and using full 3D FEA. A local manufacturer of air cooled heat exchangers was approached and they helped design an experimental specimen and agreed to fund its construction. Unfortunately, due to time constraints, it was not possible to build and test the specimen experimentally. The specimen geometry was then analysed using the Abaqus (Dassault Systѐmes Simulia Corp., 2010) FEA package. The 3D FEA analysis considered several different load cases. After carefully analysing the results it was seen that the rigid frame model could make useful qualitative statements about the effects of the nozzle loads, but it performed poorly as a quantitative prediction method. However, since the effects of the nozzle loads are generally quite small it is possible that, with appropriate safety factors, the rigid frame model could be used as a conservative design methodology. The usefulness of a commonly used empirical guideline was also examined. This project is far from conclusive and much more work is required to fully examine the usefulness of rigid frame theory. That being said, this project has made important steps towards a more complete understanding of rectangular pressure vessels and has shown possible ways forward.
203

The effect of hyperosmolarity on fluid-phase and receptor-mediated endocytosis in P388D1 macrophages

Begg, Michael John January 1992 (has links)
Extracellular components can be internalized by either receptor-mediated or fluid-phase endocytosis. Receptor-mediated endocytosis involves the internalization of receptor-ligand complexes into coated vesicles of about 0.1 μm in diameter. The average diameter of primary pinocytic vesicles has been calculated to be 0.24 - 0.28 μm. The discrepancy in size between coated vesicles and the average pinosome diameter can be explained if, in addition to coated vesicles, another endocytic process involving vesicles larger than 0.28 μm in diameter takes place. These two vesicle types could together produce an average diameter of 0.24 μm. This hypothesis suggests that coated vesicles cannot fully account for fluid-phase uptake. Hypertonic conditions can selectively inhibit receptor-mediated endocytosis, leaving fluid-phase uptake unaffected, again suggesting that an alternative to coated pit-mediated uptake exists. In this study we determined the volume-weighted average diameter of primary pinocytic vesicles under hypertonic conditions (0.52 osm) where receptor-mediated uptake of transferrin was selectively inhibited by 42%. Fluid-phase uptake of FITC-dextran was unaffected by 0.52 osm medium. The internalization rate of ³H-galactose-labelled plasma membrane was reduced from 2.6 %/min to 1.5 %/min. The decrease in the rate of membrane internalization, without a reduction in the rate of fluid uptake at hypertonicity, implied a reduced surface to volume ratio of the pinocytic vesicles formed under these conditions. This suggested an increase in the average diameter of primary pinocytic vesicles. Membrane internalization rates were calculated on the assumption that all labelled cell-surface constituents were internalized to the same relative extent, as has been shown previously for isotonic conditions. This assumption was also shown to hold true under isotonic conditions. The reduced rate of membrane internalization under hypertonic conditions was shown not to be due to the exclusion of any labelled protein species from internalized vesicles. The larger average vesicle size determined under conditions of selective reduction of coated vesicle formation (i.e. hypertonicity), demonstrates the existence of a population of larger pinosomes involved in a possible alternative mechanism to coated-pit-mediated endocytosis.
204

LONG-TERM REGULATION OF PROTEIN CONCENTRATION IN HELA AT VARIABLE OSMOTIC AND IONIC CONDITIONS

Hollembeak, Jordan E. 28 April 2022 (has links)
No description available.
205

Sequential Expression of NKCC2, TonEBP, Aldose Reductase, and Urea Transporter-A in Developing Mouse Kidney

Lee, Hyun Wook, Kim, Wan Young, Song, Hyun Kuk, Yang, Chul Woo, Han, Ki Hwan, Kwon, H. Moo, Kim, Jin 01 January 2007 (has links)
This study was conducted to test the hypothesis that, during renal development, the Na-K-2Cl cotransporter type 2 (NKCC2) activates the tonicity-responsive enhancer binding protein (TonEBP) transcription factor by creating medullary hypertonicity. TonEBP, in turn, drives the expression of aldose reductase (AR) and urea transporter-A (UT-A). Kidneys from 13- to19-day-old fetuses (F13-F19), 1- to 21-day-old pups (P1-P21), and adult mice were examined by immunohistochemistry. NKCC2 was first detected on F14 in differentiating macula densa and thick ascending limb (TAL). TonEBP was first detected on F15 in the medullary collecting duct (MCD) and surrounding endothelial cells. AR was detected in the MCD cells of the renal medulla from F15. UT-A first appeared in the descending thin limb (DTL) on F16 and in the MCD on F18. After birth, NKCC2-positive TALs disappeared gradually from the tip of the renal papilla, becoming completely undetectable in the inner medulla on P21. TonEBP shifted from the cytoplasm to the nucleus in both vascular endothelial cells and MCD cells on P1, and its abundance increased gradually afterward. Immunoreactivity for AR and UT-A in the renal medulla increased markedly after birth. Treatment of neonatal animals with furosemide dramatically reduced expression of TonEBP, AR, and UT-A1. Furosemide also prevented the disappearance of NKCC2-expressing TALs in the papilla. The sequential expression of NKCC2, TonEBP, and its targets AR and UT-A and the reduced expression TonEBP and its targets in response to furosemide treatment support the hypothesis that local hypertonicity produced by the activity of NKCC2 activates TonEBP during development.
206

The effect of residual stress distribution on the ultimate strength of tubular beam-columns

Barrett, Steven L. 01 January 1980 (has links)
Using data for the longitudinal residual stress distribution in welded steel tubes, curves describing these distributions are selected for study. Each of these curves are checked for static balance across the tube cross section. The curves that exhibit an imbalance are adjusted by a combination of a simplified model for each and the use of a computer program that is developed to calculate the resulting forces and moments on the cross section. The residual stress in the area of the tube wall opposite the longitudinal weld is found to be the most important in the adjustment to obtain exact equilibrium. The method of adjustment is rational and based on maintaining a smooth curve shape that matches the raw data the closest and producing a curve that is balanced within the accuracy limits required.
207

Sample Size Determination in Multivariate Parameters With Applications to Nonuniform Subsampling in Big Data High Dimensional Linear Regression

Wang, Yu 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Subsampling is an important method in the analysis of Big Data. Subsample size determination (SSSD) plays a crucial part in extracting information from data and in breaking the challenges resulted from huge data sizes. In this thesis, (1) Sample size determination (SSD) is investigated in multivariate parameters, and sample size formulas are obtained for multivariate normal distribution. (2) Sample size formulas are obtained based on concentration inequalities. (3) Improved bounds for McDiarmid’s inequalities are obtained. (4) The obtained results are applied to nonuniform subsampling in Big Data high dimensional linear regression. (5) Numerical studies are conducted. The sample size formula in univariate normal distribution is a melody in elementary statistics. It appears that its generalization to multivariate normal (or more generally multivariate parameters) hasn’t been caught much attention to the best of our knowledge. In this thesis, we introduce a definition for SSD, and obtain explicit formulas for multivariate normal distribution, in gratifying analogy of the sample size formula in univariate normal. Commonly used concentration inequalities provide exponential rates, and sample sizes based on these inequalities are often loose. Talagrand (1995) provided the missing factor to sharpen these inequalities. We obtained the numeric values of the constants in the missing factor and slightly improved his results. Furthermore, we provided the missing factor in McDiarmid’s inequality. These improved bounds are used to give shrunken sample sizes.
208

Examining the effect of pH on the structure and stability of CLIC1 with E228L and E85L CLIC1 variants

Cross, Megan Olivia 01 August 2013 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2013 / The chloride intracellular channel CLIC1 is an anion channel protein that has been implicated in a number of physiological processes. It is fascinating in that it is synthesised as a soluble monomer that is able to reversibly bind membranes without the aid of a membrane-targeting tag or receptor. CLIC1 membrane binding is promoted by low pH and involves separation of the N- and C-domains and subsequent refolding of the N-domain, which traverses the membrane as an α-helix. At the low pH of a membrane surface, pH 5.5, soluble CLIC1 demonstrates decreased conformational stability and forms a partially unfolded intermediate state under mild denaturing conditions. In this study, these pH-effects are proposed to occur as a result of low pH-induced protonation of two conserved glutamate residues, Glu85 and Glu228. Both are involved in domain-maintaining interactions and are proposed to form part of an electrostatic network of pH-sensitive residues. At low pH, protonation of these glutamates would break their electrostatic interactions, allowing separation of the domains. To investigate this possibility, Glu228 and Glu85 were mutated to leucine residues. Each variant protein was then investigated at pH 7.0 and pH 5.5 and results were compared to the wild-type. Secondary and tertiary structures were examined using far-UV circular dichroism and fluorescence spectroscopy, respectively. Conformational flexibility was investigated with limited thermolysin proteolysis. Stability was studied using thermal and urea-induced equilibrium unfolding. The unfolding intermediate state was detected using ANS binding and its structure was characterised. While neither residue substitution caused global structural perturbations, both destabilised the structure and promoted intermediate formation at pH 5.5. This was particularly evident for the E85L variant, which also formed a significant intermediate population at pH 7.0. It was concluded that the interactions of Glu228 and Glu85 are involved in maintaining the CLIC1 native state. Additionally, the lack of pH-dependence of intermediate formation in the E85L variant suggested that Glu85 is likely to function as a pH-sensor. It is thus involved in the „priming‟ of the CLIC1 structure for the conformational changes that may lead to membrane binding.
209

ASYMPTOTIC ANALYSIS OF FRONTAL POLYMERIZATION IN A MEDIUM WITH PERIODIC MONOMER DISTRIBUTION

Joyner, James Thomas 05 October 2006 (has links)
No description available.
210

MODELING THE RELATIONSHIP BETWEEN COMPETITION AND EFFICIENCY: A CASE STUDY OF THE BITCOIN BLOCKCHAIN

Muslimwal, Shawkatullah 01 December 2022 (has links)
Bitcoin transactions are recorded in a public ledger known as the blockchain. Critical to its security is the distributed system that maintains the blockchain, which is run by individuals known as miners. Bitcoin has a total market capitalization of 273bn US Dollars as of September 2022, and one bitcoin is exchanged at 19,000 US Dollars in the market. Despite its vast market capitalization growth and popularity since its inception, the scalability and efficiency of Bitcoin are still puzzling questions for researchers. This paper used the daily time series data from the inception until September 7, 2022, to analyze the relationship between bitcoin miners' competition and the Bitcoin blockchain's efficiency. The number of daily transactions and average block validation time were used as indicators for the system's efficiency, and the Herfindahl-Hirschman Index (HHI) of miners' hash rate is used as a proxy for mining concentration. Controlling for necessary factors, the econometric analysis in this paper shows that concentration in bitcoin mining is associated with lower system efficiency. Higher competition between miners leads to a higher number of Bitcoin transactions and a lower block validation time.

Page generated in 0.1441 seconds