• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sequential Expression of NKCC2, TonEBP, Aldose Reductase, and Urea Transporter-A in Developing Mouse Kidney

Lee, Hyun Wook, Kim, Wan Young, Song, Hyun Kuk, Yang, Chul Woo, Han, Ki Hwan, Kwon, H. Moo, Kim, Jin 01 January 2007 (has links)
This study was conducted to test the hypothesis that, during renal development, the Na-K-2Cl cotransporter type 2 (NKCC2) activates the tonicity-responsive enhancer binding protein (TonEBP) transcription factor by creating medullary hypertonicity. TonEBP, in turn, drives the expression of aldose reductase (AR) and urea transporter-A (UT-A). Kidneys from 13- to19-day-old fetuses (F13-F19), 1- to 21-day-old pups (P1-P21), and adult mice were examined by immunohistochemistry. NKCC2 was first detected on F14 in differentiating macula densa and thick ascending limb (TAL). TonEBP was first detected on F15 in the medullary collecting duct (MCD) and surrounding endothelial cells. AR was detected in the MCD cells of the renal medulla from F15. UT-A first appeared in the descending thin limb (DTL) on F16 and in the MCD on F18. After birth, NKCC2-positive TALs disappeared gradually from the tip of the renal papilla, becoming completely undetectable in the inner medulla on P21. TonEBP shifted from the cytoplasm to the nucleus in both vascular endothelial cells and MCD cells on P1, and its abundance increased gradually afterward. Immunoreactivity for AR and UT-A in the renal medulla increased markedly after birth. Treatment of neonatal animals with furosemide dramatically reduced expression of TonEBP, AR, and UT-A1. Furosemide also prevented the disappearance of NKCC2-expressing TALs in the papilla. The sequential expression of NKCC2, TonEBP, and its targets AR and UT-A and the reduced expression TonEBP and its targets in response to furosemide treatment support the hypothesis that local hypertonicity produced by the activity of NKCC2 activates TonEBP during development.
2

Quantal Mechanisms Underlying Stimulation-induced Augmentation and Potentiation

Cheng, Hong 01 May 1998 (has links)
Repetitive stimulation of motor nerves causes an increase in the number of packets of transmitter ("quanta") that can be released in the ensuing period. This represents a type of conditioning, in which synaptic transmission may be enhanced by prior activity. Despite many studies of this phenomenon, there have been no investigations of the quantal mechanisms underlying these events, due to the rapid changes in transmitter output and the short time periods involved. To examine this problem, a method was developed in which estimates of the quantal release parameters could be obtained over very brief periods (3 s). Conventional microelectrode techniques were used to record miniature endplate potentials (MEPPs) from isolated frog (Rana pipiens) cutaneous pectoris muscles, before and after repetitive (40 sec at 80 Hz) nerve stimulation. Estimates were obtained of m (number of quanta released), n (number of functional release sites), p (mean probability of release) and var$\rm\sb{s}$p (spatial variance in p) using a method that employs counts of MEPPs per unit time. Fluctuations in the estimates were reduced using a moving bin technique (bin size = 3 s, $\Delta$bin = 1 s). Muscle contraction was prevented using low Ca$\sp{2+},$ high Mg$\sp{2+}$ Ringer or normal Ringer to which $\mu$-conotoxin GIIIA was added. These studies showed that: (1) the post-stimulation increase in transmitter release was dependent on stimulation frequency and not on the total number of stimulus impulses. When the total number of pulses was kept constant, the high frequency pattern produced a higher level of transmitter release than did the lower frequency patterns; (2) augmentation and potentiation were present in both low Ca$\sp{2+},$ high Mg$\sp{2+}$ and normal Ringer solutions, but potentiation, m, n, p and var$\rm\sb{s}$p were greater in normal Ringer solution than in low Ca$\sp{2+},$ high Mg$\sp{2+}$ solution. In low Ca$\sp{2+},$ high Mg$\sp{2+}$ solution, there was a larger decrease in n compared to p; (3) hypertonicity (addition of 100 mM sucrose) produced a marked increase in both basal and stimulation-induced values of m, n, and p. By contrast, there was a marked increase in the stimulation-induced but not the basal values of var$\rm\sb{s}$p; (4) hypertonicity produced a decrease in augmentation but had no effect on potentiation; (5) augmentation and potentiation appeared to involve mitochondrial uptake and efflux of cytoplasmic Ca$\sp{2+}.$ Tetraphenylphosphonium (which blocks mitochondrial Ca$\sp{2+}$ efflux and uptake) decreased augmentation and potentiation in low Ca$\sp{2+},$ high Mg$\sp{2+}$ solutions but increased potentiation in the same solution made hypertonic with 100 mM sucrose; (6) the overall findings suggest that this new method may be useful for investigating the subcellular dynamics of transmitter release following nerve stimulation.
3

Role of the transcription factor NFAT5 in mammalian cell cycle regulation

Drews-Elger, Katherine 07 November 2008 (has links)
The transcription factor NFAT5/TonEBP belongs to the Rel family, which also comprises NF ÛB and NFATc proteins. NFAT5 only shares structural and functional homology with other Rel family members at the level of the DNA binding domain, and differs from them considerably in other regions. NFAT5 enables mammalian cells to adapt to and withstand hypertonicity by orchestrating an osmoprotective gene expression program whose products include chaperones as well as ransporters and enzymes that increase the intracellular concentration of compatible osmolytes. NFAT5-null mice suffer severe embryonic and perinatal lethality, and surviving adults manifest growth defects, pronounced renal atrophy and lymphocyte dysfunction associated with ineffective responses to hypertonicity. To circumvent the lethality of these mice and study the function of NFAT5 in specific cell types without the possible side effects of generalized defects in the organism, we have produced conditional knockout mice that allow the deletion of NFAT5 in specific cell types. Here we have investigated the hypertonic stress response in wild-type and NFAT5-/- lymphocytes. Proliferating lymphocytes exposed to hypertonic conditions exhibited an early, NFAT5- independent, genotoxic stress-like response with induction of p53, p21 and GADD45, downregulation of cyclins E1, A2 and B1 mRNA, and arrest in S and G2/M. This was followed by an NFAT5-dependent adaptive phase in wild-type cells, which induced osmoprotective gene products, downregulated stress markers, and resumed cyclin expression and cell cycle progression. NFAT5-/- cells, however, failed to induce osmoprotective genes and though they downregulated genotoxic stress markers, they displayed defective cell cycle progression associated with reduced expression of cyclins E1, A2, B1, and aurora B kinase. Finally, T cell receptor-induced expression of cyclins, aurora B kinase, and cell cycle progression were inhibited in NFAT5-/- lymphocytes exposed to hypertonicity levels in the range reported in plasma in patients and animal models of osmoregulatory disorders. Our results support the conclusion that the activation of an osmoprotective gene expression program by NFAT5 enables cells to proliferate under hypertonic stress conditions by maintaining the expression of S and G2/M cyclins and cell cycle progression.
4

Hypertonicity Regulation of Cytochrome P450 CYP3A

I-Chyang, Andrew Chuang 11 December 2012 (has links)
Cytochrome P450 3A isozymes (CYP3A) metabolize approximately 50% of therapeutic drugs. It has recently been discovered that human CYP3A mRNA levels can be induced by hypertonicity; a physiological state not previously linked to its regulation. The osmosensitive transcription factor, Nuclear Factor of Activated T-Cells 5 (NFAT5), regulates multiple genes that restore osmolyte homeostasis and promote cell protection during osmotic stress. In silico examinations and in vitro experiments using reporters, knockdown and binding assays in the human intestinal cell line C2bbe1 have revealed an active tonicity-responsive enhancer (TonE) within CYP3A7 intron (+5417/+5427 from CYP3A7 transcriptional start site) that is responsible for NFAT5 binding and NFAT5-dependent regulation of CYP3A isoforms. In addition, hypertonicity-mediated CYP3A induction is also observed in both hepatic and intestinal cell lines. Effects of tonicity changes on in vivo CYP3A expression and function were examined in a humanized CYP3A transgenic mouse with similar tissue expression in humans. More specifically, intervention with prolonged dehydration involving alternating between 24-hour cycles of water-deprivation and water ad lib for 1 week (cyclic water-deprivation; four 24-hour water-deprivation and three 24-hour water ad lib periods), increased expression of NFAT5 target genes Slc6a12 in the liver and kidney (2.5 ± 0.6-fold over water ad lib, n = 14, p = 0.04; and 3.1 ± 0.6-fold, n = 10, p = 0.02, respectively), Akr1b3 in the liver, and Slc5a3 in the kidney. Immunofluorescent microscopy revealed an increase of nuclear-distributed mouse NFAT5 in cyclic water-deprived animals, consistent with NFAT5 activation. Most importantly, CYP3A4 mRNA levels were noted to be elevated in the liver and kidney (11.8 ± 4.8-fold over water ad lib, n = 14, p = 0.04 and 2.2 ± 0.4-fold, n = 9, p = 0.02, respectively), with concurrent CYP3A protein and activity increase. Localized hypertonic environment in the gut was simulated by providing animals with a week-long high-salt diet. The effects of high-salt diet in the gut were similar to those of cyclic water-deprivation in the liver and kidney; where NFAT5 showed nuclear distribution and NFAT5 target gene expression (Slc6a12; 20.5 ± 6.7-fold over a week-long low-salt diet, n = 8, p = 0.02 and Slc6a6; 3.2 ± 0.7-fold, n = 10, p < 0.01, in the duodenum). Furthermore, an increase of CYP3A4 mRNA was observed (2.6 ± 0.5-fold over a week-long low-salt diet, n = 14, p = 0.03), with a corresponding rise in protein expression and activity levels. In summary, increased expression of in vitro and in vivo human CYP3A was achieved using a hypertonic stimulus; concurrent NFAT5 activation and NFAT5 target gene expression were observed. These results suggested a possible binding of activated NFAT5 to CYP3A TonE situated within the intronic region of CYP3A7. It could be further concluded that NFAT5 may be responsible for the hypertonic induction of human CYP3A.
5

Hypertonicity Regulation of Cytochrome P450 CYP3A

I-Chyang, Andrew Chuang 11 December 2012 (has links)
Cytochrome P450 3A isozymes (CYP3A) metabolize approximately 50% of therapeutic drugs. It has recently been discovered that human CYP3A mRNA levels can be induced by hypertonicity; a physiological state not previously linked to its regulation. The osmosensitive transcription factor, Nuclear Factor of Activated T-Cells 5 (NFAT5), regulates multiple genes that restore osmolyte homeostasis and promote cell protection during osmotic stress. In silico examinations and in vitro experiments using reporters, knockdown and binding assays in the human intestinal cell line C2bbe1 have revealed an active tonicity-responsive enhancer (TonE) within CYP3A7 intron (+5417/+5427 from CYP3A7 transcriptional start site) that is responsible for NFAT5 binding and NFAT5-dependent regulation of CYP3A isoforms. In addition, hypertonicity-mediated CYP3A induction is also observed in both hepatic and intestinal cell lines. Effects of tonicity changes on in vivo CYP3A expression and function were examined in a humanized CYP3A transgenic mouse with similar tissue expression in humans. More specifically, intervention with prolonged dehydration involving alternating between 24-hour cycles of water-deprivation and water ad lib for 1 week (cyclic water-deprivation; four 24-hour water-deprivation and three 24-hour water ad lib periods), increased expression of NFAT5 target genes Slc6a12 in the liver and kidney (2.5 ± 0.6-fold over water ad lib, n = 14, p = 0.04; and 3.1 ± 0.6-fold, n = 10, p = 0.02, respectively), Akr1b3 in the liver, and Slc5a3 in the kidney. Immunofluorescent microscopy revealed an increase of nuclear-distributed mouse NFAT5 in cyclic water-deprived animals, consistent with NFAT5 activation. Most importantly, CYP3A4 mRNA levels were noted to be elevated in the liver and kidney (11.8 ± 4.8-fold over water ad lib, n = 14, p = 0.04 and 2.2 ± 0.4-fold, n = 9, p = 0.02, respectively), with concurrent CYP3A protein and activity increase. Localized hypertonic environment in the gut was simulated by providing animals with a week-long high-salt diet. The effects of high-salt diet in the gut were similar to those of cyclic water-deprivation in the liver and kidney; where NFAT5 showed nuclear distribution and NFAT5 target gene expression (Slc6a12; 20.5 ± 6.7-fold over a week-long low-salt diet, n = 8, p = 0.02 and Slc6a6; 3.2 ± 0.7-fold, n = 10, p < 0.01, in the duodenum). Furthermore, an increase of CYP3A4 mRNA was observed (2.6 ± 0.5-fold over a week-long low-salt diet, n = 14, p = 0.03), with a corresponding rise in protein expression and activity levels. In summary, increased expression of in vitro and in vivo human CYP3A was achieved using a hypertonic stimulus; concurrent NFAT5 activation and NFAT5 target gene expression were observed. These results suggested a possible binding of activated NFAT5 to CYP3A TonE situated within the intronic region of CYP3A7. It could be further concluded that NFAT5 may be responsible for the hypertonic induction of human CYP3A.
6

Prevention of Postoperative Duodenal Ileus by COX-2 Inhibition Improves Duodenal Function in Anaesthetised Rats

Sedin, John January 2013 (has links)
Abdominal surgery inhibits gastrointestinal motility, a phenomenon referred to as postoperative ileus. Since the postoperative ileus disturbs duodenal physiology it is important to minimize the side effects of this condition. Recent experiments in our laboratory show that treatment of anaesthetised rats with parecoxib, a selective cyclooxygenase-2 inhibitor, prevents duodenal postoperative ileus, increases duodenal mucosal bicarbonate secretion and improves other functions as well. One aim of the thesis was to investigate whether removal of luminal chloride affect the parecoxib- and the vasoactive intestinal peptide (VIP)-induced stimulation of duodenal mucosal bicarbonate secretion. The proximal duodenum of anaesthetised Dark Agouti rats was perfused with isotonic solutions containing zero or low Cl- and the effect on luminal alkalinisation determined. The basal as well as the parecoxib-induced increase in alkalinisation, but not that stimulated by VIP, were markedly reduced in the absence of luminal Cl-. One important function of the duodenum is to adjust luminal osmolality towards that in the blood. It is believed that the adjustment of osmolality in the duodenum is achieved by osmosis and diffusion of electrolytes along their concentration gradients and that these processes occur predominately paracellularly. Another aim of the thesis was to examine whether prevention of postoperative ileus affects the duodenal response to luminal hypertonicity. The proximal duodenum of anaesthetised Dark Agouti and Sprague-Dawley rats were perfused with hypertonic solutions of different composition and osmolality and the effects on duodenal motility, alkaline secretion, transepithelial fluid flux, mucosal permeability and the adjustment of luminal osmolality were determined in absence and presence of parecoxib. It is concluded that COX-2 inhibition increases duodenal mucosal bicarbonate secretion by stimulating apical Cl-/HCO3- exchange in duodenocytes. Furthermore, pretreatment of anaesthetised rats with parecoxib improves a number of duodenal functions in both rat strains that contribute to improve the ability to adjust luminal osmolality. The choice of rat strain is another important feature to consider when interpreting the results because the DA strain was more responsive to luminal hypertonicity than the SD strain. Finally, several evidences are provided to suggest that the adjustment of luminal osmolality in the rat duodenum is a regulated process.

Page generated in 0.0753 seconds