• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 19
  • 19
  • 11
  • 8
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification and characterisation of novel plant specific regulators of cellular responses to double stranded DNA breaks

Moore, Anne Margaret January 2012 (has links)
The ability of organisms to sense and respond to challenges to their genome integrity is key to survival. In particular, the ability to detect and respond to double-stranded DNA breaks (DSBs) is of fundamental importance as not only are DSBs potentially lethal as they can trigger apoptosis, but there is also the potential for the loss of genetic information. The response to DSBs is well conserved across Eukaryotes and comprises two stages: detection of the break and subsequent remedial action. The remedial action involves cell cycle arrest, DNA repair, and, if repair cannot be effected, possible apoptosis. Whilst many of the key components, especially in the initial detection of the break, are conserved there are also differences between plants and animals in some of the main components and their roles. In this thesis I have proposed an overall framework for the cellular response to DSBs in plants and have proposed two candidate genes, TCP20 and SOG1, as novel plant specific activators in this response. Their suitability has been addressed by considering their activation and their downstream targets. I have shown that TCP20 is necessary for growth arrest observed in shoot apical meristems after exposure to genotoxic stress. I have also shown that activation of one of the key targets of TCP20, CYCB1;1 requires TCP20 and that a key TCP20 binding motif in the promoter of CYCB1;1 is necessary for the up-regulation of CYCB1;1 in response to genotoxic stress. This motif is over-represented in the promoters of many of the genes involved in DNA damage repair, suggesting that TCP20 plays a role in the co-ordination of the cellular response to DSBs.
2

Investigating the Role of Interferon Regulatory Factor 3 in Response to Genotoxic Stress

Davidson, Adam 21 August 2013 (has links)
Interferon regulatory factor 3 (IRF3) plays an important role in activating the innate immune response in a variety of conditions, including viral infection. As well as regulating the immune response to viruses, IRF3 is involved in regulating cellular functions including apoptosis. Apoptosis and the inflammatory response to viral infection are very different; therefore, it is obvious that IRF3 plays dramatically different roles in the cell depending on the conditions. We previously identified a non-activating phosphorylation of IRF3 in response to adenovirus (Ad) in which Serine-173 is phosphorylated. In addition to Ad infection, IRF3- S173 is phosphorylated in response to genotoxic stresses including ultraviolet (UV) irradiation and etoposide. In this study, I show that this phosphorylation event is involved in a variety of processes including protein stability, cell survival and IRF3 regulation. Thus, phosphorylation of IRF3-S173 is a novel and important event in a complex regulatory pathway of an integral protein.
3

Investigating the Role of Interferon Regulatory Factor 3 in Response to Genotoxic Stress

Davidson, Adam January 2013 (has links)
Interferon regulatory factor 3 (IRF3) plays an important role in activating the innate immune response in a variety of conditions, including viral infection. As well as regulating the immune response to viruses, IRF3 is involved in regulating cellular functions including apoptosis. Apoptosis and the inflammatory response to viral infection are very different; therefore, it is obvious that IRF3 plays dramatically different roles in the cell depending on the conditions. We previously identified a non-activating phosphorylation of IRF3 in response to adenovirus (Ad) in which Serine-173 is phosphorylated. In addition to Ad infection, IRF3- S173 is phosphorylated in response to genotoxic stresses including ultraviolet (UV) irradiation and etoposide. In this study, I show that this phosphorylation event is involved in a variety of processes including protein stability, cell survival and IRF3 regulation. Thus, phosphorylation of IRF3-S173 is a novel and important event in a complex regulatory pathway of an integral protein.
4

Effect of Partial Poly (ADP-ribose) Glycohydrolase Gene Deletion on Cellular Responses to Genotoxic Stress

Gao, Hong January 2006 (has links)
Polymers of ADP-ribose (PAR) are rapidly synthesized by poly(ADPribose) polymerases (PARPs) and rapidly degraded by poly(ADP-ribose) glycohydrolase (PARG) following genotoxic stress. Since PAR metabolism plays an important role in cell fate determination following genotoxic stress, enzymes involved in PAR metabolism potentially represent promising therapeutic targets for modulating diseases of inappropriate cell proliferation or death. PARP-1 has been well validated and several PARP-1 inhibitors are currently being evaluated in clinical trials for cancer and ischemia treatment. In contrast, the biological function of PARG is still poorly understood. Due to low abundance of protein levels in mammalian cells and its unique substrate, PARG potentially represents another attractive target for pathological conditions mentioned above. PARG-Δ2,3 cells derived from homozygous PARG-Δ2,3 mice with targeted disruption of exons 2 and 3 of the PARG gene are used in this dissertation. The nuclear isoform PARG60 in PARG-Δ2,3 cells lacks the putative regulatory domain A compared to the nuclear isoform PARG110 in wild type cells. We report in this dissertation that PARG-Δ2,3 cells accumulate less PAR in spite of more rapid depletion of NAD following treatment with N-methyl- N’- Nitro-N-Nitrosoguanidine (MNNG). The estimation of PARP and PARG activity in intact cells shows increased activity of both enzymes in PARG-Δ2,3 cells following MNNG treatment, indicating the important role of domain A in the regulation of PARG and PARP activity under these conditions. Following MNNG treatment, PARG-Δ2,3 cells show reduced formation of XRCC1 foci, decreased H2AX phosphorylation, decreased DNA break intermediates during repair, and increased cell death. The altered PAR metabolism and defective cellular responses related to DNA repair in PARG-Δ2,3 cells may contribute to increased sensitivity of these cells to MNNG. Studies presented in this dissertation clearly demonstrate the important role of PARG110 in PAR metabolism and cellular responses to genotoxic stress, and thus provide supportive data for the validation of PARG as a promising potential therapeutic target.
5

Posttranslační modifikace adaptorového proteinu DAXX v buněčné odpovědi na genotoxický stres / Posttranslational modification of the adapter protein DAXX in the cellular response to genotoxic stress

Bražina, Jan January 2016 (has links)
Maintaining the chromosome continuity and complete genetic information in human cells is crucial for cell survival and the whole organism. It prevents life-threatening pathologies and preserves genetic continuity. However, cellular DNA is exposed to both endogenous and exogenous stress damaging its content and integrity. This stress activates mechanisms involving detection and repair of these damaged sites (DDR). One of the most serious types of DNA damage double-stranded breaks (DSB) occuring when both strands are severed. DSBs trigger wave of PTMs that regulate protein interactions, nuclear localization and catalytic activity of hundreds of proteins. Such modifications include acetylation, methylation, SUMOylation, ubiquitinylation and especially phosphorylation. The most important kinases involved in DDR kinases are ATM, ATR and DNA-PK. These kinases are activated immediately after the detection of the damaged area. DAXX (Death-associated protein 6) is an adapter and predominantly nuclear protein, which is involved in chromatin remodeling, gene expression modulation, antiviral response and depositing histone H3.3 variants into chromatin or telomeres. Daxx is essential for murine embryogenesis, since the homozygous deletion is lethal in E9.5-10. In 2006 a study mapping the substrates of kinases...
6

Etude de la réponse des cellules souches épidermiques aux stress génotoxiques radiatifs / Epidermal stem cells response to radiative genotoxic stress

Marie, Mélanie 19 February 2013 (has links)
La peau étant le premier tissu exposé aux diverses agressions de l’environnement extérieur, les cellules qui la composent doivent disposer de mécanismes de protection vis-à-vis de ces agressions, afin d’assurer le maintien de l’homéostasie tissulaire. Les cellules souches de l’épiderme assurant le renouvellement du compartiment épithélial pendant toute la vie de l’individu, la préservation de l’intégrité de leur génome est essentielle à la fonctionnalité pérenne de la peau. Mon doctorat avait pour objectif d’explorer les mécanismes mis en œuvre par les cellules souches de l’épiderme interfolliculaire afin de se protéger de deux stress génotoxiques radiatifs, à savoir : les rayonnements gamma et les rayonnements ultraviolets B (UVB). Durant mon doctorat, j’ai tout d’abord participé à la démonstration des mécanismes de protection mis en œuvre par les cellules souches des kératinocytes après irradiation ionisante. En effet, il a été montré que ces cellules sont capables de réparer très rapidement l’ensemble des dommages de l’ADN radio-induits, et que cette réparation était activée par le facteur de croissance FGF2 (Fibroblast Growth Factor 2). Afin de savoir si ce mécanisme de protection était aussi opérant dans les cellules souches de carcinome cutané, nous l’avons recherché dans la sous-population de cellules souches qui peut être isolée d’une lignée de carcinome cutané humain. Comme dans le cas des cellules souches normales, nous avons montré que les cellules souches de cancer présentent une réparation très rapide des dommages de l’ADN radio-induits. De plus, le facteur de croissance FGF2 participe à cette réparation, notamment par la présence d’isoformes de ce facteur dans le noyau cellulaire. Le second projet de mon doctorat avait pour objectif l’étude de la réponse des cellules souches et des progéniteurs de l’épiderme humain aux rayonnements UVB. Une fois mises en place les conditions de tri en cytométrie de flux et d’irradiation par les UVB, la toxicité de ces rayonnements a été évaluée dans un modèle cellulaire primaire. Nous avons caractérisé les effets des photons UVB sur la viabilité et la prolifération cellulaire et étudié la réparation des dommages de l’ADN. Cette étude nous a permis de mettre en évidence des réponses aux UVB différentes entre les cellules souches et leur descendance immédiate, les kératinocytes progéniteurs, notamment au niveau de l’activité de réparation des dommages de l’ADN. Par ailleurs, une étude du transcriptome des cellules irradiées a été réalisée, qui permet d’analyser les mécanismes globaux communs et spécifiques de réponse au stress dans les deux populations. L’ensemble des données obtenues nous permet de proposer plusieurs mécanismes de protection, communs et spécifiques, mis en œuvre par les cellules souches de l’épiderme en réponse aux stress radiatifs UVB et gamma. / Human skin is the first organ exposed to various environmental stresses, which requires the development by skin stem cells of specific mechanisms to protect themselves and to ensure tissue homeostasis. As stem cells are responsible for the maintenance of epidermis during individual lifetime, the preservation of genomic integrity in these cells is essential. My PhD aimed at exploring the mechanisms set up by epidermal stem cells in order to protect themselves from two genotoxic stresses, ionizing radiation ( Gamma Rays) and ultraviolet radiation (UVB). To begin my PhD, I have taken part of the demonstration of protective mechanisms used by keratinocyte stem cells after ionizing radiation. It has been shown that these cells are able to rapidly repair most types of radiation-induced DNA damage. Furthermore, we demonstrated that this repair is activated by the fibroblast growth factor 2 (FGF2). In order to know if this protective mechanism is also operating in cutaneous carcinoma stem cells, we investigated the response to gamma Rays of carcinoma stem cells isolated from a human carcinoma cell line. As in normal keratinocyte stem cells, we demonstrated that cancer stem cells could rapidly repair radio-induced DNA damage. Furthermore, fibroblast growth factor 2 also mediates this repair, notably thanks to its nuclear isoforms. The second project of my PhD was to study human epidermal stem cells and progenitors responses to UVB radiation. Once cytometry and irradiation conditions were set up, the toxicity of UVB radiation has been evaluate in the primary cell model. We then characterized UVB photons effects on cell viability, proliferation and repair of DNA damage. This study allowed us to bring out that responses of stem cells and their progeny to UVB are different, notably at the level of part of their repair activity of DNA damage. Moreover, progenitors and stem cells transcriptomic responses after UVB irradiation have been study in order to analyze the global mechanisms of stress response in the two cell populations. Taken together, data obtained during my PhD allowed us to show that stem cells respond differently than keratinocyte progenitors to radiation stress, and that they developed both intrinsic and radiation-induced strategies allowing a better protection. When comparing gamma Rays and UVB, we found that, although their toxic effects on skin share many similarities, the mechanisms set up by human epidermal stem cells to protect themselves vary according to the type of radiation stress.
7

Rôle de l'intéraction Asf1-Rad53 dans la stabilité génomique chez S.cerevisiae / Role of the Asf1-Rad53 interaction in genomic stability in S.cerevisiae

Jiao, Yue 04 July 2011 (has links)
Asf1 est une protéine chaperon d’histone, qui participe à l’assemblage et au désassemblage des histones H3/H4 sur l’ADN. Asf1 n’est pas essentiel pour la viabilité cellulaire chez S. cerevisiae, mais les voies de surveillance des dommages à l’ADN sont activées de façon constitutive dans les cellules dépourvues d’Asf1 et celles-ci sont hypersensibles à plusieurs types de stress génotoxiques. Chez S. cerevisiae, Asf1 forme un complexe stable avec Rad53 en absence de stress génotoxique. Nos résultats suggèrent qu’au moins trois surfaces d’interaction sont impliquées dans le complexe Asf1-Rad53. Le domaine FHA1 de Rad53 fixe Asf1 phosphorylé sur T270, l’extrémité C-terminale de Rad53 fixe la même surface d’Asf1 impliquée dans la fixation des co-chaperones HirA/CAF-1, et un troisième site putative est constituée de la surface d’Asf1 impliquée dans la fixation de l’histone H3 avec le domaine kinase de Rad53. Lors des stress génotoxiques, Rad53 est phosphorylée et activée. Mes résultats montrent une dissociation totale du complexe Rad53-Asf1 après traitement HU, mais la préservation du complexe après traitement des cellules avec une gamme de concentration de MMS. Nous pensons que la régulation du complexe traduisent des réponses cellulaires distinctes adaptées à des stress génotoxiques spécifiques. Par ailleurs, grâce à la structure du complexe formé par un peptide C-terminal de Rad53 et le domaine N-terminal d’Asf1, nous avons isolé une mutation rad53_A806R-L808R. Nous avons constaté que cette mutation déstabilise l’interaction entre Asf1 et Rad53 et augmente la viabilité des mutants rad9 et rad24 aux stress génotoxiquex. Ce mutant rad53_A806R-L808R semble retourne plus vite dans le cycle cellulaire et/ou traverse plus vite la phase S par rapport à Rad53-WT, et augmente la réparation de l’ADN ou l’adaptation aux dommages du simple mutant rad24Δ. / Asf1 is a histone chaperone, which participates in the assembly and disassembly of histones H3/H4 on DNA. Asf1 is not essential for cell viability in yeast, but the DNA damage checkpoints are constitutively activated in cells lacking Asf1 and they are hypersensitive to several types of genotoxic stress. In yeast, Asf1 forms a stable complex with Rad53 in the absence of genotoxic stress. Our results suggest that this complex involves at Ieast three interaction surfaces. One site involves the H3-binding surface of Asf1 with an as yet undefined surface of Rad53, probably reside in the kinase domain of Rad53. A second site is formed by the Rad53-FHA1 domain binding to Asf1-T270. The third site involves the C-terminal 21 aa of Rad53 bound to the conserved Asf1 N-terminal domain, where Rad53 competes with histone H3/H4 and co-chaperones HirA/CAF-1 for binding to the same surface of Asf1. Rad53 is phosphorylated and activated upon genotoxic stress. The Asf1-Rad53 complex dissociated when cells were treated with hydroxyurea but not methyl methane sulfonate, suggesting a regulation of the complex as a function of the stress.In addition to these results, we also found that the rad53-A806R+L808R mutation at the C-terminus of Rad53 destabilized the Asf1-Rad53 interaction and increased the viability of rad9 and rad24 mutants to genotoxic stress. The rad53-ALRR mutant also appeared to re-enter the cell cycle and/or traverse S-phase more rapidly than wild type and increased repair or adaptation when combined with the rad24 mutant.
8

Genotoxický stres a senescence nádorových buněk; dopad na růst nádorů a protinádorovou imunitu. / Genotoxic stress and senescence in tumour cells: impact on the tumour growth and anti-tumour immunity.

Sapega, Olena January 2021 (has links)
Premature cellular senescence is the process of permanent cell cycle arrest in response to various inducers, such as DNA damage, oxidative stress, chemotherapy agents, and irradiation. Senescent cells produce and secrete numbers of cytokines, chemokines, growth factors, which compose specific senescence-associated secretory phenotype (SASP). Senescence is considered to be an important barrier against tumor progression. On the other hand, senescent cells can also exert protumorigenic effects in their microenvironment. Based on this concept, the major aim of this thesis was to determine tumor cells senescence in terms of different inducers, namely chemotherapeutic agent docetaxel (DTX) and cytokines IFNγ and TNFα, and to demonstrate the role of immunotherapy in senescent cells elimination. Our results show that DTX-induced senescent cells can exert a tumor-promoting effect when co-injected with proliferating cells in mice. Importantly, we demonstrate that IL-12-based immunotherapy suppresses senescence-accelerated tumor growth. These results suggest that IL-12-based immunotherapy can be effectively used in anti-tumor therapy mainly in a case when the microenvironment is altered by the presence of tumor senescent cells. On the other hand, the data we obtained in vitro show that bystander or...
9

Elucidating Mechanisms of Alternative Splicing in Cancer and Cellular Stress

Montes Serey, Matias Ignacio January 2021 (has links)
No description available.
10

Role of the transcription factor NFAT5 in mammalian cell cycle regulation

Drews-Elger, Katherine 07 November 2008 (has links)
The transcription factor NFAT5/TonEBP belongs to the Rel family, which also comprises NF ÛB and NFATc proteins. NFAT5 only shares structural and functional homology with other Rel family members at the level of the DNA binding domain, and differs from them considerably in other regions. NFAT5 enables mammalian cells to adapt to and withstand hypertonicity by orchestrating an osmoprotective gene expression program whose products include chaperones as well as ransporters and enzymes that increase the intracellular concentration of compatible osmolytes. NFAT5-null mice suffer severe embryonic and perinatal lethality, and surviving adults manifest growth defects, pronounced renal atrophy and lymphocyte dysfunction associated with ineffective responses to hypertonicity. To circumvent the lethality of these mice and study the function of NFAT5 in specific cell types without the possible side effects of generalized defects in the organism, we have produced conditional knockout mice that allow the deletion of NFAT5 in specific cell types. Here we have investigated the hypertonic stress response in wild-type and NFAT5-/- lymphocytes. Proliferating lymphocytes exposed to hypertonic conditions exhibited an early, NFAT5- independent, genotoxic stress-like response with induction of p53, p21 and GADD45, downregulation of cyclins E1, A2 and B1 mRNA, and arrest in S and G2/M. This was followed by an NFAT5-dependent adaptive phase in wild-type cells, which induced osmoprotective gene products, downregulated stress markers, and resumed cyclin expression and cell cycle progression. NFAT5-/- cells, however, failed to induce osmoprotective genes and though they downregulated genotoxic stress markers, they displayed defective cell cycle progression associated with reduced expression of cyclins E1, A2, B1, and aurora B kinase. Finally, T cell receptor-induced expression of cyclins, aurora B kinase, and cell cycle progression were inhibited in NFAT5-/- lymphocytes exposed to hypertonicity levels in the range reported in plasma in patients and animal models of osmoregulatory disorders. Our results support the conclusion that the activation of an osmoprotective gene expression program by NFAT5 enables cells to proliferate under hypertonic stress conditions by maintaining the expression of S and G2/M cyclins and cell cycle progression.

Page generated in 0.0826 seconds