• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rôle de l'intéraction Asf1-Rad53 dans la stabilité génomique chez S.cerevisiae / Role of the Asf1-Rad53 interaction in genomic stability in S.cerevisiae

Jiao, Yue 04 July 2011 (has links)
Asf1 est une protéine chaperon d’histone, qui participe à l’assemblage et au désassemblage des histones H3/H4 sur l’ADN. Asf1 n’est pas essentiel pour la viabilité cellulaire chez S. cerevisiae, mais les voies de surveillance des dommages à l’ADN sont activées de façon constitutive dans les cellules dépourvues d’Asf1 et celles-ci sont hypersensibles à plusieurs types de stress génotoxiques. Chez S. cerevisiae, Asf1 forme un complexe stable avec Rad53 en absence de stress génotoxique. Nos résultats suggèrent qu’au moins trois surfaces d’interaction sont impliquées dans le complexe Asf1-Rad53. Le domaine FHA1 de Rad53 fixe Asf1 phosphorylé sur T270, l’extrémité C-terminale de Rad53 fixe la même surface d’Asf1 impliquée dans la fixation des co-chaperones HirA/CAF-1, et un troisième site putative est constituée de la surface d’Asf1 impliquée dans la fixation de l’histone H3 avec le domaine kinase de Rad53. Lors des stress génotoxiques, Rad53 est phosphorylée et activée. Mes résultats montrent une dissociation totale du complexe Rad53-Asf1 après traitement HU, mais la préservation du complexe après traitement des cellules avec une gamme de concentration de MMS. Nous pensons que la régulation du complexe traduisent des réponses cellulaires distinctes adaptées à des stress génotoxiques spécifiques. Par ailleurs, grâce à la structure du complexe formé par un peptide C-terminal de Rad53 et le domaine N-terminal d’Asf1, nous avons isolé une mutation rad53_A806R-L808R. Nous avons constaté que cette mutation déstabilise l’interaction entre Asf1 et Rad53 et augmente la viabilité des mutants rad9 et rad24 aux stress génotoxiquex. Ce mutant rad53_A806R-L808R semble retourne plus vite dans le cycle cellulaire et/ou traverse plus vite la phase S par rapport à Rad53-WT, et augmente la réparation de l’ADN ou l’adaptation aux dommages du simple mutant rad24Δ. / Asf1 is a histone chaperone, which participates in the assembly and disassembly of histones H3/H4 on DNA. Asf1 is not essential for cell viability in yeast, but the DNA damage checkpoints are constitutively activated in cells lacking Asf1 and they are hypersensitive to several types of genotoxic stress. In yeast, Asf1 forms a stable complex with Rad53 in the absence of genotoxic stress. Our results suggest that this complex involves at Ieast three interaction surfaces. One site involves the H3-binding surface of Asf1 with an as yet undefined surface of Rad53, probably reside in the kinase domain of Rad53. A second site is formed by the Rad53-FHA1 domain binding to Asf1-T270. The third site involves the C-terminal 21 aa of Rad53 bound to the conserved Asf1 N-terminal domain, where Rad53 competes with histone H3/H4 and co-chaperones HirA/CAF-1 for binding to the same surface of Asf1. Rad53 is phosphorylated and activated upon genotoxic stress. The Asf1-Rad53 complex dissociated when cells were treated with hydroxyurea but not methyl methane sulfonate, suggesting a regulation of the complex as a function of the stress.In addition to these results, we also found that the rad53-A806R+L808R mutation at the C-terminus of Rad53 destabilized the Asf1-Rad53 interaction and increased the viability of rad9 and rad24 mutants to genotoxic stress. The rad53-ALRR mutant also appeared to re-enter the cell cycle and/or traverse S-phase more rapidly than wild type and increased repair or adaptation when combined with the rad24 mutant.
2

The roles of FANCD2 in the maintenance of common fragile site stability / Rôles de FANCD2 dans le maintien de la stabilité des sites fragiles communs

Fernandes, Philippe 17 September 2018 (has links)
Les sites fragiles communs (SFCs) sont des régions génomiques particulièrement sensibles au stress réplicatif et sont impliqués dans l’initiation et la progression du cancer. L’Anémie de Fanconi (AF) est une maladie génétique rare qui se caractérise principalement par une aplasie médullaire, des malformations congénitales ainsi qu’une forte prédisposition au cancer chez les patients (leucémies myéloïdes et tumeurs solides de la tête et du coup). L’instabilité génomique a été identifiée comme étant une source majeure de prédisposition des patients AF au cancer et les SFCs sont particulièrement sensibles dans cette maladie. L’AF est causée par la mutation de gènes codant des protéines participant à une voie moléculaire appelée voie FANC qui a été décrite dans la réparation des ponts inter-brins. Malgré l’importance de la voie FANC dans le maintien de la stabilité des SFCs, les mécanismes sous-jacents restent à élucider. Au cours de ma thèse, nous avons identifié un nouveau rôle de FANCD2 dans le maintien des SFCs. En effet, nous montrons que FANCD2 atténue l’expression des gènes présents au sein des SFCs maintenant leur stabilité. De plus, nous montrons que la transcription de ces gènes est nécessaire au recrutement et au rôle de FANCD2 au sein de ces régions. Enfin, nous avons identifié le stress métabolique comme étant un signal induisant l’expression des gènes des SFCs et que FANCD2 module cette réponse. La réduction de ce stress pourrait être une piste thérapeutique intéressante afin de prévenir l’instabilité des SFCs dans l’AF. / Common fragile sites (CFSs) are genomic regions prone to form breaks and gaps on metaphase chromosomes after replicative stress and promote genomic instability in the earliest steps of tumor development. Proteins involved in replication/repair of CFSs are necessary to prevent their instability. Among them is FANCD2, a key protein of the FANC pathway necessary to resolve inter-strand crosslinks and defective in Fanconi Anemia (FA). FA is a rare genomic instability disorder characterized by bone marrow failure, congenital abnormalities and predisposition to acute myeloid leukemia and epithelial cancer. Genomic instability in FA is supposed to predispose patients to cancers. Importantly, CFSs are more unstable in FA and chromosome breaks observed in FA cells occur preferentially at CFSs. During my PhD, we identified a new role of FANCD2 in CFS stability maintenance. We show that FANCD2 attenuates transcription of the large genes present at CFSs, preventing their instability. Moreover, we demonstrate that transcription is necessary for FANCD2 recruitment and function at CFSs. Importantly, we identified the metabolic stress as a signal triggering CFS gene expression and FANCD2 is necessary to modulate this response. Reducing this stress is a promising therapeutic issue to prevent CFS and genomic instability in FA.
3

Rôle de l'interaction asf1-rad53 dans la stabilite genomique chez s.cerevisiae

Jiao, Yue 04 July 2011 (has links) (PDF)
Asf1 est une protéine chaperon d'histone, qui participe à l'assemblage et au désassemblage des histones H3/H4 sur l'ADN. Asf1 n'est pas essentiel pour la viabilité cellulaire chez S. cerevisiae, mais les voies de surveillance des dommages à l'ADN sont activées de façon constitutive dans les cellules dépourvues d'Asf1 et celles-ci sont hypersensibles à plusieurs types de stress génotoxiques. Chez S. cerevisiae, Asf1 forme un complexe stable avec Rad53 en absence de stress génotoxique. Nos résultats suggèrent qu'au moins trois surfaces d'interaction sont impliquées dans le complexe Asf1-Rad53. Le domaine FHA1 de Rad53 fixe Asf1 phosphorylé sur T270, l'extrémité C-terminale de Rad53 fixe la même surface d'Asf1 impliquée dans la fixation des co-chaperones HirA/CAF-1, et un troisième site putative est constituée de la surface d'Asf1 impliquée dans la fixation de l'histone H3 avec le domaine kinase de Rad53. Lors des stress génotoxiques, Rad53 est phosphorylée et activée. Mes résultats montrent une dissociation totale du complexe Rad53-Asf1 après traitement HU, mais la préservation du complexe après traitement des cellules avec une gamme de concentration de MMS. Nous pensons que la régulation du complexe traduisent des réponses cellulaires distinctes adaptées à des stress génotoxiques spécifiques. Par ailleurs, grâce à la structure du complexe formé par un peptide C-terminal de Rad53 et le domaine N-terminal d'Asf1, nous avons isolé une mutation rad53_A806R-L808R. Nous avons constaté que cette mutation déstabilise l'interaction entre Asf1 et Rad53 et augmente la viabilité des mutants rad9 et rad24 aux stress génotoxiquex. Ce mutant rad53_A806R-L808R semble retourne plus vite dans le cycle cellulaire et/ou traverse plus vite la phase S par rapport à Rad53-WT, et augmente la réparation de l'ADN ou l'adaptation aux dommages du simple mutant rad24Δ.
4

Le maintien de la stabilité génomique du plastide : un petit génome d’une grande importance

Lepage, Étienne 04 1900 (has links)
Chez les plantes, le génome plastidique est continuellement exposé à divers stress mutagènes, tels l’oxydation des bases et le blocage des fourches de réplication. Étonnamment, malgré ces menaces, le génome du plastide est reconnu pour être très stable, sa stabilité dépassant même celle du génome nucléaire. Néanmoins, les mécanismes de réparation de l’ADN et du maintien de la stabilité du génome plastidique sont encore peu connus. Afin de mieux comprendre ces processus, nous avons développé une approche, basée sur l’emploi de la ciprofloxacine, qui nous permet d’induire des bris d’ADN double-brins (DSBs) spécifiquement dans le génome des organelles. En criblant, à l’aide de ce composé, une collection de mutants d’Arabidopsis thaliana déficients pour des protéines du nucléoïde du plastide, nous avons identifié 16 gènes vraisemblablement impliqués dans le maintien de la stabilité génomique de cette organelle. Parmi ces gènes, ceux de la famille Whirly jouent un rôle primordial dans la protection du génome plastidique face aux réarrangements dépendants de séquences de microhomologie. Deux autres familles de gènes codant pour des protéines plastidiques, soit celle des polymérases de types-I et celle des recombinases, semblent davantage impliquées dans les mécanismes conservateurs de réparation des DSBs. Les relations épistatiques entre ces gènes et ceux des Whirly ont permis de définir les bases moléculaires des mécanismes de la réparation dépendante de microhomologies (MHMR) dans le plastide. Nous proposons également que ce type de mécanismes servirait en quelque sorte de roue de secours pour les mécanismes conservateurs de réparation. Finalement, un criblage non-biaisé, utilisant une collection de plus de 50,000 lignées mutantes d’Arabidopsis, a été réalisé. Ce criblage a permis d’établir un lien entre la stabilité génomique et le métabolisme des espèces réactives oxygénées (ROS). En effet, la plupart des gènes identifiés lors de ce criblage sont impliqués dans la photosynthèse et la détoxification des ROS. Globalement, notre étude a permis d’élargir notre compréhension des mécanismes du maintien de la stabilité génomique dans le plastide et de mieux comprendre l’importance de ces processus. / The plant plastidial genome is constantly threatened by many mutagenic stresses, such as base oxidation and replication fork stalling. Despite these threats, the plastid genome has long been known to be more stable than the nuclear genome, suggesting that alterations of its structure would have dramatic consequences on plant fitness. At the moment, little is known about the genes and the pathways allowing such conservation of the organelle genome sequences. To gain insight into these mechanisms, we developed an assay which uses ciprofloxacin, a gyrase inhibitor, to generate DNA double-strand breaks (DSBs) exclusively in plant organelles. By screening mutants deficient for proteins composing the plastid nucleoid on ciprofloxacin, we were able to identify 16 candidate genes, most likely involved in the repair of DSBs in plastid. Among these genes, those of the Whirly family of single-stranded DNA binding proteins are shown to be key factors in protecting the genome from error-prone microhomology mediated repair (MHMR). Two other family of proteins, the plastid type-I polymerases and the plastid recombinases, seem to be involved in the conservative repair pathways. The evaluation of the epistatic relationship between those two genes and the Whirly genes led us to define the molecular basis of MHMR and to propose that they might act as a backup system for conservative repair pathways. Finally, a non-biased screen, using 50,000 different insertion lines, allowed the identification of numerous genes that were already associated with ROS homeostasis, suggesting a link between DNA repair and ROS imbalance. Globally, our study shed light on the mechanisms that allow the maintenance of plastid genome, while explaining the importance of such conservation of the plastid genome.

Page generated in 0.0747 seconds