Spelling suggestions: "subject:"condition dde glissement"" "subject:"condition dee glissement""
1 |
Contribution à la simulation numérique de l'écoulement des massifs de sols liquéfiés et de leur action sur les ouvragesMontassar, Sami 01 1900 (has links) (PDF)
La liquéfaction d'un massif de sol, due à l'action des sollicitations sismiques, provoque son instabilité et engendre des efforts importants sur les ouvrages avoisinants, qu'il convient de prendre en compte dans le dimensionnement de ces derniers. Nous proposons dans ce travail une approche dans le but d'une part de simuler l'évolution dans le temps du massif de sol liquéfié, modélisé comme un matériau viscoplastique de Bingham, d'autre part d'évaluer les efforts exercés sur les ouvrages que le sol liquéfié rencontre en s'écoulant. La résolution du problème d'évolution repose sur un principe de minimum en vitesses, combiné à un schéma d'intégration explicite dans le temps, permettant d'actualiser de proche en proche la géométrie du massif entre deux configurations successives. Une condition de bord réaliste autorisant le glissement à partir d'un seuil de cisaillement est par ailleurs formulée. Les efforts exercés sur les structures avoisinantes sont alors évalués en analysant le problème bidimensionnel de l'écoulement d'un fluide de Bingham autour d'un obstacle. Un outil numérique, reposant sur une formulation type "éléments finis" et utilisant la méthode du lagrangien augmenté associée à la technique de décomposition-coordination, a été élaboré et mis en oeuvre sur un certain nombre d'applications.
|
2 |
Modèles de fronts pour films minces. / Contact line models for thin filmsRoux, Marthe 06 December 2012 (has links)
Dans cette thèse, nous souhaitons décrire la dynamique du front d'avancement d'un film mince s'écoulant sur un plan incliné non rugueux. Nous nous intéressons surtout au problème de point triple situé à l'interface entre la paroi solide, le fluide en mouvement et l'air, par exemple lors de l'écoulement d'une goutte sur une surface inclinée. Dans une première partie, nous expliquons pourquoi on peut se ramener aux équations de Stokes et pourquoi le problème résultant est mal posé. Pour y remédier, la condition de non-glissement à la paroi est remplacée par une condition de glissement lorsqu'on est proche du front. Ainsi on réussit à trouver une solution dans H1. Puis nous développons la dynamique de l'écoulement à l'amont du front : un film mince. Cet écoulement peut se modéliser sous la forme d'équations de type Saint-Venant sur la hauteur et le débit. Nous justifions cette construction à partir des équations de Navier-Stokes en utilisant un développement asymptotique en fonction du paramètre onde longue. Dans la zone du front nous résolvons le système de Stokes stationnaire avec glissement au fond par un développement asymptotique en fonction du nombre capillaire. Le front est divisé en une zone interne près du front et une zone externe loin du front, puis les solutions de chaque zone sont soit raccordées directement (angles dynamique et statique égaux), soit raccordées au moyen d'une zone intermédiaire (angles dynamique et statique différents). Cela nous conduit à deux familles de modèles. En réunissant les modèles type Saint-Venant et les différents modèles de front, nous obtenons un modèle de Saint-Venant tenant compte de la dynamique du front. À partir de ce modèle à deux équations nous pouvons écrire un modèle plus simple à une équation sur la hauteur. Ce modèle permet d'étendre les modèles existants avec adhérence à des modèles avec glissement. On peut alors réaliser des simulations numériques combinant un front d'avancement et un film mince / In the present work, we describe the dynamics of a moving contact line for thin films flowing down an inclined plane. Our focus is the problem of triple point located at the interface between the solid wall, the moving fluid and air, for example the spreading of a drop on a plane dry wall (horizontal or inclined) due to gravity and capillarity. In the first part, we explain how we can reduce to the Stokes equations and why the resulting problem is ill-posed. This singularity is removed by permitting the fluid to slip along the wall close to the contact line. Thus we manage to find a solution in H1 constructed by asymptotic expansions. Then we focus on the upstream dynamic of the flow, which is set to a thin film flow. We develop the classical system of Shallow-water equations (Saint-Venant equations) from the full Navier-Stokes system using the classical long-wavelength expansion. We obtain a set coupled equations for the flow depth and the flow-rate. In the neightboorhood of the contact line, we develop an asymptotic expansion of the steady Stokes system with slip at bottom in function of the capillary number. The solution in the vicinity of the contact line is developped in the inner region and the outer region. Then, a direct matching can be done (assuming dynamic and static angles are equals) or using an intermediate region (with different angles). This leads to two different families of models. Bringing together the upstream Shallow-water equations and the contact line models, we write a new Shallow-water model taking into account the dynamic of the moving contact line. Then, we deduce a simplier one-equation model for the film thickness. This model extends existing models with no slip at bottom to models with slip. Direct numerical simulations of the last models are performed, combining a moving contact line and a thin liquid film
|
3 |
Interactions hydrodynamiques entre une particule solide et une paroi plane avec condition de glissement de NavierGhalya, Nejiba 18 December 2012 (has links) (PDF)
Cette thèse concerne l'étude de l'écoulement autour d'une particule solide dans un écoulement de cisaillement parabolique d'un fluide visqueux pres d'une paroi plane et solide sur laquelle s'exerce une condition de glissement de Navier. Pour une particule sphérique, cet écoulement est d'abord résolu par la méthode des coordonnées bispheriques. Nous obtenons ainsi la force et le couple qui s'exercent sur la particule sphérique fixe dans cet écoulement ainsi que le stresslet, moment symétrique des contraintes. Par linéarité des équations de Stokes, le problème d'une sphère libre de se mouvoir dans un écoulement parabolique avec glissement sur la paroi est traite par combinaison des problèmes elementaires suivants: sphère fixe dans un écoulement parabolique, sphère en translation et en rotation. Nous calculons ainsi le stresslet pour une sphère qui se déplace librement dans cet écoulement avec glissement sur la paroi. Dans une deuxième partie de ce travail, nous appliquons la méthode des elements de frontière avec le tenseur de Green approprie pour résoudre le problème d'une particule solide de forme quelconque dans un écoulement parabolique d'un fluide visqueux pres d'une paroi avec glissement. Nous retrouvons nos résultats pour le cas d'une particule sphérique. Cette méthode est alors appliquée au cas d'une particule ellipsoïdale fixe de même volume que la sphère et dont l'axe est perpendiculaire a la paroi . Par comparaison des résultats pour les deux particules, nous en déduisons l'influence de la forme de la particule. Dans le dernier chapitre nous présentons de nouveaux résultats concernant les forces, couples, vitesses et stresslets pour le cas d'un ellipsoïde d'axe incline par rapport a la paroi.
|
4 |
Modèles de fronts pour films mincesRoux, Marthe 06 December 2012 (has links) (PDF)
Dans cette thèse, nous souhaitons décrire la dynamique du front d'avancement d'un film mince s'écoulant sur un plan incliné non rugueux. Nous nous intéressons surtout au problème de point triple situé à l'interface entre la paroi solide, le fluide en mouvement et l'air, par exemple lors de l'écoulement d'une goutte sur une surface inclinée. Dans une première partie, nous expliquons pourquoi on peut se ramener aux équations de Stokes et pourquoi le problème résultant est mal posé. Pour y remédier, la condition de non-glissement à la paroi est remplacée par une condition de glissement lorsqu'on est proche du front. Ainsi on réussit à trouver une solution dans H1. Puis nous développons la dynamique de l'écoulement à l'amont du front : un film mince. Cet écoulement peut se modéliser sous la forme d'équations de type Saint-Venant sur la hauteur et le débit. Nous justifions cette construction à partir des équations de Navier-Stokes en utilisant un développement asymptotique en fonction du paramètre onde longue. Dans la zone du front nous résolvons le système de Stokes stationnaire avec glissement au fond par un développement asymptotique en fonction du nombre capillaire. Le front est divisé en une zone interne près du front et une zone externe loin du front, puis les solutions de chaque zone sont soit raccordées directement (angles dynamique et statique égaux), soit raccordées au moyen d'une zone intermédiaire (angles dynamique et statique différents). Cela nous conduit à deux familles de modèles. En réunissant les modèles type Saint-Venant et les différents modèles de front, nous obtenons un modèle de Saint-Venant tenant compte de la dynamique du front. À partir de ce modèle à deux équations nous pouvons écrire un modèle plus simple à une équation sur la hauteur. Ce modèle permet d'étendre les modèles existants avec adhérence à des modèles avec glissement. On peut alors réaliser des simulations numériques combinant un front d'avancement et un film mince.
|
Page generated in 0.1359 seconds